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1. Introduction

With the advent of large spacecraft, flexibility has become an in-
creasingly important factor in the system attitude stability. Early de-
signs of spacecraft were based on rigid body analysis, according to which
rotational motion is stable if it takes place about the axis of maximum or
minimum moment of inertia and unstable if the body rotates about the axis
of intermediate moment of inertia (see, for example, Ref. 1, Sec. 6.7).
The erratic behavior of the Explorer I, a satellite stabilized about the
axis of minimum moment of inertia, prompted a re-examination of the rigid

2 were able to attribute the

body assumption. Indeed, Thomson and Reiter
behavior of the Explorer I satellite to energy dissipation resulting from
the vibration of flexible antennas. This conclusion was corroborated by
Meirovitch.3 References 2 and 3 used the so-called "energy sink" approach.
Their main conclusion was that a flexible satellite cannot be stabilized
about the axis of minimum moment of inertia, leaving as stability criterion
what has come to be known as the "greatest moment of inertia" requirement.
For a number of years, no significant additional work on the
stability of flexible spacecraft was performed. Some work on cable-connected
space stations cannot be really considered pertinent. Some investigation
that can be regarded as being related to flexible spacecraft is that by

4

Hooker and Margulies,' who model a satellite as "a set of n rigid bodies

interconnected by dissipative elastic joints," and forming so-called
"topological trees."

The first serious attempt to treat rigorously the flexibility ef-
fects on the attitude stability of flexible satellites can be attributed
to Meirovitch and Ne]son.5 Reference 5 investigated a satellite with
elastic appendages by means of an infinitesimal analysis. It appears that
Ref. 5 uses modal analysis for the first time in conjunction with the



stability of flexible spacecraft. At the same time, Nelson and Meirovitch6
used the Liapunov direct method to investigate the stability of a rigid
satellite with elastically connected moving parts. The motion of a satel-
lite consisting of two rigid bodies connected by an elastic structure was

7

investigated by Robe and Kane’ by means of an infinitesimal analysis. Simu-

lating a spacecraft by a set of rigid masses interconnected by massless

8 derived the corresponding equations of motion, and

elastic members, Likins
indicated that a solution can be obtained by modal analysis. Reference 8,
however, does not produce an algorithm for the solution of the equations.
Thermal effects and solar radiation pressure were found by Etkin and Hughes9
to cause the anomalous behavior of spinning satellites with long flexible
antennas. The flexibility effects on the attitude motion of spacecraft
were also investigated by Modi and Berenton!0 but the validity of their
analysis is in doubt, as they restrict the satellite vibration to planar.
An interesting paper by Newton and Farre'ﬂn presents a method for
evaluating the natural frequencies of a flexible gravity-gradient stabi-
lized satellite. In the process, Reference 11 linearizes the equations of
motion about the deformed eqyi1ibrium. As generalized coordinates, the
investigators consider complete deformation patterns of the satellite.
This procedure is not only unorthodox but also tends to limit the number of
degrees of freedom of the simulation, not to mention the fact that one must
guess in advance configuration patterns. Moreover, there is some question
as to the evaluation of the equilibrium configuration. Nevertheless, the
paper contains some interesting ideas. A paper by Likins and wirsch1n912
proposes to introduce the concept of "synthetic modes" in conjunction with
a "hybrid" coordinate system, where the latter is defined as a set of co-

ordinates consisting of rotational coordinates of the spacecraft as a whole




and modal coordinates for the flexible appendages. This idea, however,
was introduced earlier in Reference 5.

A1l preceding investigations have one thing in common, namely,
they are all discretization schemes. Some use lumping of the distributed
mass of the elastic members, a procedure referred to sometimes as spatial
discretization, and others use series truncation in conjunction with modal
analysis. In a first attempt to apply Liapunov's direct method to hybrid
systems from the area of satellite dynamics, i.e., without using any dis-
cretization scheme, Meirovitch]3’]4’15 studied therﬁtability of spinning
rigid bodies with elastic appendages. It should be pointed out that the
term "hybrid" refers here to a system defined by sets of both ordinary and
partial differential equations, a concept different from that used by
Likins and b\h'r'sch'ing.]2 Several new ideas were introduced in Ref. 13, such
as the use of the bounding properties of Rayleigh's quotient to eliminate
spatial derivatives from the problem formulation and the use of testing
density functions.

The ideas of Refs. 13-15 have been pursued by Meirovitch and
Ca]ic016’17 for the case in which testing density functions cannot be de-
fined readily. References 16 and 17 develop the so-called "method of
integral coordinates," whereby certain integrals are identified and defined
as generalized coordinates. Then, using the bounding properties of
Rayleigh's quotient as well as certain Schwarz's inequalities for functions,
a function « bounding the Hamiltonian H from below is obtained, x < H, so
that « can be used as a testing function in conjunction with Liapunov's
direct method. The method of integral coordinates is basically a dis-
cretization scheme.

One problem that has received little attention in the technical
literature is that of deformed equilibrium, which can be referred to
mathematically as "nontrivial equilibrium.” Such problems arise in the

case of gravity-gradient or spin-stabilized satellites with very flexible



appendages that are not aligned with the satellite's principal axes. Find-
ing the equilibrium configuration can be quite a problem in itself,
especially if the governing equations are nonlinear. Addressing himself

to this problem, F]atley18 obtained the nonlinear equilibrium configuration
of the Radio Astronomy Explorer (RAE) satellite by means of an analogue
computer. Deformed equilibrium has also been considered in Ref. 11, but
the details are not clear and no plot of the deformed equilibrium is shown.
In seeking stability statements for the RAE/B satellite, Meirovitch]9 ob-
tained as a by-product the nonlinear deformed equilibrium, thus confirming
the results of Ref. 18.

The present study is concerned with the stability of a hybrid dy-
namical system about nontrivial equilibrium. It contains many of the for-
mulations and results of Ref. 19. Qualitative stability statements are ob-
tained for the RAE/B satellite by both the Liapunov direct method and by an
infinitesimal analysis. In connection with the infinitesimal analysis, the
natural frequencies of oscillation about the nonlinear nontrivial equilib-
rium were obtained by a method developed by the first author of this re-
port.20 The method of Ref. 20 considers a state vector consisting of
generalized coordinates and velocities, where the coordinates include both
rotations and elastic deformations, and develops an eigenvalue problem in
terms of real quantities alone. The stability statements of Ref. 19 and

corresponding statements obtained from the solution of the eigenvalue prob-

lem agree completely.

2. Problem Formulation

We shall be concérned with the motion of a body consisting of n + 1

parts, of which one part is rigid and n parts are elastic. The domain of




extension of the rigid part 'is denoted by Dg and those of. the elastic parts
when in undeformed state by Dy (i = 1,2,...,n) (see Fig. 1). Correspond-
ingly, the masses associated with the domains D; are denoted by m;

n
(i = 0,1,...,n), so that the total mass is m = iE m;. The elastic domains

are rigidly attached to Dj and have conmon.boundagies only with Dy.

The body m is assumed to move in a central-force gravitational
field, with its mass center describing a given orbit about the center of
force C.F.., where the latter is assumed to be fixed in an inertial space.

In describing the motion of m it will prove convenient to identify
a system of axes xyz (see Fig. 1) with the undeformed state. The origin ¢
of xyz is taken to coincide with the mass center of m in the undeformed
state and axes xyz themselves coincide with the principal axes of m in the
same state. Note that the system xyz is embedded in the rigid part Dg but
is not necessarily a set of principal axes for that part. We shall assume
here that the nature of the elastic motion is such that the mass center of
the entire system remains at the origin of xyz. In measuring elastic de-
formations, we consider reference frames x;y;z; fixed relative to the
elastic domains D; (i =1,2,...,n), where the direction of these axes is
chosen parallel to that of the elastic deformations. The origin of axes
X;¥;2Z; is denoted by 0; and in general it need not coincide with c.

Next let us denote the radius vector from the mass center c to a
point in the domain D; (i = 0,1,...,n) by hj + rj, where the point coincides
with the position of an element of mass dm; when the body is in undeformed
state. The constant-magnitude vector f; denotes the radius vector from c
to 0i; clearly hg = Q. On the other hand, r; is the radius vector from 0;
to the point in question, and its components represent the independent
spatial variables associated with a point in the domain D;. Denotina by ij,
.ii’ and k; the unit vectors along axes Xj, ¥j and Z3, respectively, we can

write by +ry = (hyg * x;)ig * (hyq *+95)ds * (hpg + 2idky (12 0,150000m).




In describing the elastic deformations, we can use the Lagrangian or the
Eulerian approach. According to the Lagrangian approach the independent
variables are those of the body in unqeformed state, whereas in the
Eulerian description of motion the independent variables are those of the
body in deformed shape. For infinitesimally small deformations the two
points of view coalesce, but for large deformations they do not. When it
is necessary to calculate the stresses in a body undergoing large deforma-
tions, the Eulerian approach is more convenient. Although we shall be con-
cerned with relatively large deformations, we have no interest in the in-
ternal stress distribution, and because of kinematical considerations we
shall find it more convenient to use the Lagrangian approach. Hence, de-
noting by u; the elastic displacement vector of dmi, and recognizing that
the vector depends both on spatial position and time, we can write it in
the form uy = uj(x{,¥4:245t)i + vi(x4eyqsz5t)i4 + wilxq,y4.24,t)ky s where
uj, v4 and w; are displacement components measured along xi, y; and zy,
respectively. If R. is the radius vector from the center of force C.F. to
the mass center ¢, then the position relative to the inertial space of a
mass element dm; in deformed state is given by R4y = R. + hy + ry + yy.
Iﬁ should be noted that, by the definition of the mass center,
ifo fmf (hy * ry * yyddmy = 0.
In view of the above discussion, the kinetic energy can be written as

T = l-j Rieo Rysdms =1mR. o R +1 g [ (hy + r

2 m; wdi  wdi i T2 M ac = D jeg Imy i i

+ ug) ‘(Fli +f1*§1)dm1 (1)

where the first term on the right side of Eq. (1) is recognized as the kinetic

energy of translation of the mass center ¢ and the second one as the kinetic




energy due to motion relative to c. Dots denote derivatives with respect to
time. Denoting by w the angular velocity of the set of axes xyz, hence also
of the sets X;¥5Z4 (i =1,2,...,n), and recalling the expression for the
time derivative of a vector expressed in terms of rotating coordinates, we

obtain

. . . —.l .
ho #rg +uy =i+ ax(hy +ry +yg) (2)

in which g% = uiii + Viii + wEi is the velocity of dm; relative to c due

to elastic effects alone. Introducing Eq. (2) into (1), we arrive at

T= 2'£d°.u.{+ﬁ'

N | =t
3
1§ - 10
(@]
X
+
N —
"no=s

: Im (hy * ry + ug) = yydm;

Y

n . .
z [ g5 ugang (3)

where gd is the inertia dyadic of the body in deformed state about axes
Xyz.

Equation (3) is most conveniently expressed in matrix form. The
matrix forms of the vectors éc and v are simply {ﬁc} and {w}, respectively.
The inertia dyadic J4 and the term on the right side of Eq. (3) require

n 0
further attention. The inertia dyadic can be written as J4 = I, gé}) ,

where gg:) (i = 0,1,...,n) is the inertia dyadic associated with domain
Di when the corresponding mass is in deformed shape. The superscript

i indicates that the dyadic is expressed in terms of the base Xx;y;Z;.
This would require that we express g_in the same base. It is simpler,
however, to express every gdi in the base xyz instead. Denoting the
§0) and‘rgi) when expressed in the base xyz and X:¥52Z5

respectively, and by {rio)} and {r§1)} the associated column matrices,

vector r; by r




the relation between the two can be written as {rgo)} = [zi]T{rﬁi)},
where [2;] is the matrix of direction cosines between axes X;¥;2; and

Xyz. In a similar fashion, if we denote by gé?) and gg:) the inertia
dyadics when expressed in the base xyz and xiyizi, respectively, and

by [Jé?)] and [Jéj)] the associated inertia matrices, then the relation
between the two can be shown to have the form [Jﬁ?)] = [zi]T [Jéi)][zi].
With the understanding that the inertia matrices imply the body in deformed
shape, we can drop the subscript d. Moreover, we shall drop the super-
script i when it agrees with the subscript. Hence, the inertia matrix for
the entire body, expressed in the base xyz, takes the form [J(O)] =

igo [zi]T[Ji][ziJ. We note that [235] = [1], where [1] is the unit
matrix. A similar analysis can be performed with regard to the third

term on the right side of Eq. (3). It follows that Eq. (3) can be written

in the matrix form

_ ] - T - 1
T=5m{R} {Re} + 35

—de
M3
o

T n
wh 23] [953024]0w) + (0}

(0)
h,
i=] fm [ 1

i
T .' l n o‘ T 0'
1

where [h(o) + rgo) + u$0)

; ] is a skew-symmetric matrix whose elements satisfy

. (0) . (0), (0)_ 3 (©) , (0), (0)y . ...
the relation himn + Pimn ¥ Yimn = ££1 €nma (hiz trigl 4+ Usy ), in which

€nme is the epsilon symbol (see Ref. 1, p. 109). Clearly, {ﬁ;} represents
the matrix notation of Q%.

The potential energy results from two sources, namely, gravity and
elastic deformations, denoted by Vg and Ves respectively, so that
V.=Vg + Vp. From Ref. 15, we conclude that the gravitational potential

energy can be written as




___

tr ([e1700 1001 )4 25 .20 (02} L, 1004 T0ey Jing) (5
cC 1=

where tr denotes the trace of a matrix, and {2a} is the column matrix of

direction cosines between the direction of the vector R. and axes xyz.

~C
The elastic potential energy, also known as strain energy, requires
special attention, particularly in the case of large deformations. No
general expression, such as for T and Vg, can be written for Vp. This is
so because an explicit form requires the knowledge of the type of elastic

members involved. For the moment, we shall be content to write

Ve (6)

where Vs (i =1,2,...,n) is the elastic potential energy associated with
the member occupying the domain Di when the member is undeformed. We
shall return to the elastic potential energy shortly.

At this point it appears desirable to determine the functional
dependence of the kinetic and potential energy in order to derive general
Lagrange's equations of motion. To this end, we must specify the nature of
the elastic members. We shall be concerned with one-dimensional members
capable of flexure in two orthogonal directions. Any axial displacements
will be assumed to be a result of change of length caused by the trans-
verse displacements and not because of axial flexibility. In essence, the
members are cantilevered bars undergoing large transverse displacements
(see Fig. 2). Although we shall use nonlinear theory for the elastic

motion, this will be because geometric nonlinearities and not as a result




of nonlinear stress-strain relations. The mass distribution is arbitrary,

but some of the members carry tip masses.

Letting the radius vector r, be aligned with axis X; when the bar

is undeformed, we conclude from Fig. 2 that

G) _ . . . .
lh = ri = xi li s 1 7 ],2,...," (7)
and
(i) _ _ . .
up = U (xget) = v (xgst) gy wlxgat)ky b i = 0,2,0.00n (8)

In view of this, the elements of the inertia matrix for the rigid member
can be written as
Jo11 = Po » Jo22 7 By » Jo33 = Co
(9)
Y12 = Y021 = Y13 = Y031 = Y023 = Jp3p = O

where Ag, BO’ CO are the principal moments of inertia of the rigid part,

whereas these for member i are

2.
I 2 2 2 12
Jin = Jo oiLhys + Vi)™ + (hyy + ) ddxg + milthyy +vi)® + (hyy + i)l
1 1
L
2 2 2 2
Jipp = fojpi[(hxi +xq)7 4 (hyg + W) ldxg + mil(hyg + x)" + (hyy + wy)) -
7%
Jing = H hes + x:)2 + (hys + vg)2ldx, + hoo + x:)2 + (hys + vs)2]
133 = o Pil(ei * %07+ (hyg *+ vgddxg +mil(hg + x yi PV
i M
S :
J1]2 = JiZ] = - fo pi(hxi + xi)(hyi + vi)dxi = mi(hxi + xi)(hyi + Vi) oy
1 1
_ I d hys + %) (hs + ws)
Y13 = dimy 7 - fo eilhyy * Xy)lhyg + wpddxy = mylhyg + xg)lhgg + gy
1 1

10




2
1
i

i=1,2,...,n (10)

; are mass densities and tip masses, respectively, and

denote the coordinates of the points of attachment of the

Note that p; and m
hxi’ hyi’ hzi
booms measured from the mass center along axes X;¥52; (i = 1,2,...,n).

We shall not specify the mass densities at this point.

The desired equilibrium configuration is that of gravity-gradient
stabilization. That implies that the mass center ¢ moves in a circular
orbit with the constant angular velocity @ (see Fig. 3), and the set of
axes xyz coincides with a set of orbital axes abc, where a coincides
with the direction of the radius vector Bc’ b is tangent to the orbit
and in the direction of the motion, and ¢ is normal to the motion. Note
that the orbital axes abc rotate relative to an inertial space with angular
velocity g about axis c. The orientation of axes xyz with respect to abc
is given by three angles 83 and {w} depends on these angles and angular
velocities éj (3 =1,2,3). Because the first term in the kinetic energy,
Eq. (4), is constant for a circular orbit, it will be ignored in future

discussions. Moreover, the last term depends on the elastic velocities,

so that the functional dependence of T is

') ’j=]!2’3;i=]929--0,n (]])

T = T(ej9 ej’ Vis Vi, W.i, W,l

The gravitational potential energy VG contains the matrix {za}, which

is defined as the matrix of direction cosines between BC and xyz. Since

1



xyz can be obtained from abc by means of the rotations 0; (i = 1,2,3), it

follows that
VG=VG (eja Vi: w.i) sj=],2,3;'i=],2,...,n (]2)

It remains to establish the functional dependence of Vg. This
requires some elaboration, particularly because of the geometric nonlineari-
ties involved. First we wish to distinguish between the potential energy
Vpp due to axial motion, and the potential energy Vg due to flexure.

Next let us consider Fig. 4 and denote by s; the distance to any element
of mass dmi when measured along the deflected bar and by X; when measured
along the original direction of the undeflected bar. We shall assume that

the bar is inextensional, so that these two distances remain the same,

Sij = Xj. An eiement of length along the deflected bar can be obtained

from

(ds5)° = (dx; + dug)? + (dvy)? + (dw;)? (13)

Assuming that dui is one order of magnitude smaller than dvi and dwi,

recalling that ds; = dx;, and rearranging Eq. (13), we arrive at

1 T(dviy2 (w2 .
du_i =-3 [(dxiJ + [dx,-] ]dxi s 1= 1,2,...4n (14)

so that the axial displacement resulting from the transverse displacements
is negative. Because for inextensional motion the axial force Pxi does
not depend on the axial displacement, and, moreover, because a tensile

force opposes the motion, we have

M3

_ 11 8V.i 2 3W1° 2

0

ne 3

1
P . du, =7
i=1 fzi Xi i 2 ;

12




where total derivatives have been replaced by partial derivatives in
recognition of the fact that the displacements are functions not only of
spatial position but also of time.

The flexure potential energy is due to the bending displacements Vi

and W We shall denote the bending moment associated with the displace-

ment Vi by M,; and the change in slope corresponding to an element of
length in deformed state by d¢zi because they both take place about the

z;-axis. Accordingly, the analogous quantities associated with flexure

about y; are denoted by Myi
flexure potential energy can be written as

and d¢yi’ respectively. It follows that the

17
VEB S 2 121 fﬂ., (M.V'i d¢.Y'i * MZi d¢Z‘i) (16)
1

But the bending moments Myi and M,; can be written in terms of the

associated flexural stiffness and radii of curvature, as follows

EI. . EI_.
M. =1 , M. = Z1 (17)
yi Ryi Z1i Rzi

where, from Fig. 5, the radii of curvature have the form

ds . ds..
Ryi = d_.‘L"_ . Ryt E_Z_‘ (18)
by 924
in which
dv;y291/2 dw;y211/2
- i _ i dx,
sy = [+ o) | on s oo h ] ™ (19)
Moreover
dvy . s -
ax—' = tan ¢Z1- s 'a"XT = tan ¢y.i (20)



From Eqs. (20), it follows that

2y.
; dvi~ 9_!%
~ -1 dvy kﬁ;ﬁ a5 dx;
de,y = d (tan dx1] = 7 = 5
1+P1l L+Elﬂ
' dx'i* dX]')
(21)
dwl\ d2w,i
d ———
d¢ = 4 [t -1 dW1] dx.i) dx12 )
. = an = X
yi dx; ) I dwiwz ]+(dwi 2 i
& e
Finally, introducing Egs. (17) through (21) into Eq. (16), we obtain
2
d2v1 2 dzw 2 \
(d¢ 1)2} 1 n 21 dX~|2 dX-|2
+ EI ds = X J E + dxs
A I B T L I 1+ ()2 72|
[ ( X1] ] [ [dx1] ]
(22)

Recalling that the flexural displacements depend also on time, and writing

binomial expansions for the denominators in Eq. (22), we arrive at

2 2, .2

: 2 . 2 3V- 3
15 e G -2 e G
Veg = 3 151 0 {EIzi Y [ ) 7'{axi * Ely; ax; 2 !

' ZJ}dxi (23)

14




where the terms involving avi/axi and awi/axi are recognized as the cor-
rections due to the geometric nonlinear effect.
In view of the above, the potential energy has the general functional

form

Ve = Vea * Vi

Ve (vi’ vl Wi wi) , 1 =1,2,...,n (24)

where primes indicate differentiations with respect to X

 From Fig. 4, we conclude that we must still account for the dis-
tributed forces pyi and Pyq- Regarding these forces as nonconservative,
and assuming that they do not depend on the elastic deformations, we can

account for their effect in the form of the nonconservative work

L.
_ [T
Wne = IO (pyi v + D, wi)dxi (25)

so that the total work can be written as
W= wc + wnc = -y + wnc (26)

where the conservative work has been recognized as being equal to the
negative of the potential energy.

The system differential equations of motion, and the appropriate
boundary conditions, can be obtained from the extended Hamilton's

principle (see Ref. 1, Sec. 2.7)

t,
J (T + §W)dt = 0 (27)
t

15




where all the virtual displacements must be set equal to zero at
t = ty,t,. Introducing the Lagrangian L = T - V, Eq. (27) can be written

as

t
ft (sL + &W  )dt = 0 (28)
1

where the Lagrangian has the functional form

= ; : 1 " ’ ' " > = . 3 =
L - L(ej’ ej’ v-i! v-i’ vi’ Vi’ W.i, W.i, Wi, w_i) Y J - ],2’3 'Y 1 ];2,..-,n
(29)

It will prove convenient to separate the Lagrangian into that
associated with the rigid domain Dy and those associated with the elastic
domains D;. Hence, let the Lagrangian have the general functional form

(see Ref. 19)

n 21‘
L(t) = Ly(t) + = f Lo (g o t)dxg + Ly(24.t) (30)
i=1{‘0

where

Lo(t) = Loles(t), 85(t)], 3 = 1,2,3 (31)

L (x758) = L3005(8),05(£) v (xg5t) V4 (xg51) sV3 (x5 28) ¥ (4 t)
wi(xi,t),...,wg(xi,t)]
i=1,2,...,n (32)

L (2558) = Li005(£),05(8) vy (ag5t) oV (g 5t) Wy (29 58) wy (24,t)]

in which Ly is the Lagrangian corresponding to the system in undeformed
state, Ei the Lagrangian density associated with any point of the elastic

member i, and L; the Lagrangian corresponding to the tip mass. Moreover,
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2; represents the length of member i. From Egs. (30), (31), and (32), we

conclude that

6L = T [——1-66. + - 69'] + I [ Svi + —— 5V o7 Sy
i 385 aéJ 375l Y 70y Vi vl Vi
BL 0 BL aL . 3L 3[1 "
.alu (SV + w.' (SW + 5 GW.I + aw'l' 6W + aw:il 6W]' d

BL. aL’ . aL.
: i\ %4 L 2. 1 . )
* svpleoty OVt * gy Svilhot) ey Siist)

oL,
1 .
In addition,
n L
1
5wnc = iE] JO (pyisvi + pziGWi)dxi (34)

Inserting Eqs. (33) and (34) into (32), and integrating by parts with

respect to t, we arrive at Lagrange's equations for the rotational motion

aL d (sL :
= - — [ =0 . = ],2,3 35
365  dt (aej] ! (35)

Moreover, integrating by parts with respect to t and X;» we obtain

Lagrange's equations for the transverse displacements, and the associated

boundary conditions, in the form

a_Lj. -3 3L~i] .9 BL-i] + 32 8L-i +p,: =0, 0 <x, < 2
. Vs ') ) " yi i L
avi ot lavi) ax; lavi)  ax§ lavj

i=1,2,...4n (36a)

and
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3£. 3[' ol ol s 8[-
[}—4—- —§~(——1] 1. §—-[——11} §Vi = 0, 70w v; = 0 at X3 = 24

" Q
3V.i 3X.i 3V1- av]' at 3V.i QV% i
i=1,2,....n (36b)
3E' 3': v ah.
- 1.3 |1 .= i RPTE -
[avi 3X.i [av"i']]é\,] 0, 3";" GVi 0 at X,i 0

Equations similar in structure to Eqs. (36) can be written for Wy by

simply replacing vj by W .

3. Nontrivial Equilibrium

Let us consider the case in which Pyi = Pzj = 0 and define an
equilibrium configuration as a set of dependent variables 855 Vi Wy
constant in time and satisfying Lagrange's equations. Because these

variables do not depend on time, they must satisfy the equations

L -9, j=1,2,3 (37)
96
and
aL. 5L ] 2 aﬂ-]
1 9 1 9 1
BVi - BX.' [BV—-” * BX? (BV%'J 0, 0 < x; < 219 1 1,2, sN (383)
BE-' 3 3[ ] BLi] aL
T " " Svi: = ,“—u'Gv'=0atx-=9,
[avi X [av1J 3V1J i Y i i
i=1,2,...,n (38b)
oL af-] al;
j ) i _ i ~
-[QV% -~ 3X-i [av!ilJi'GVi = 0, - av:iu 5V1' = 0 at X.i =0

as well as a set of equations similar to (38) for W, We shall denote the

solutions of Eqs. (37) and (38), together with the set of equations for w;,
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by 550 vip(x;), wio(xi)’ where the first are constant and the latter

functions of the spatial variables x; alone.

4. Perturbations About Equilibrium. The Variational Equations of Motion

The interest lies in the stability of the system in the neighbor-
hood of the nontrivial solutions 850> Vio(xi)’ wio(xi). We shall seek
stability criteria by means of Liapunov's direct method, and, to this end,
we let the solutions of Eqs. (35) and (36) and the companion equations to

(36) have the form
65(t) = 850 + 059(t), J = 1,2,3
(39)
Vi(x55t) = viglxs) + vip(xgot)s wylxgat) = wyglxg) + wyq(xgst),
1=1,2,...,n

where ej](t), Vil(xi’t)’ wi](xi,t) are small perturbations. Inserting
Eqs. (39) into Eq. (30), and expanding a Taylor's series about the non-
trivial equilibrium, we obtain

3 .
- ) " [ __3__!___ __'____aL
L L(GJO,V.IO,V.iosvioQW.‘O’W.ioawio) + JE.I (aejo ej] + aejo e.ﬂ]

Y

N1 (oL sly - aLs oL . 2L
) i VY bk N LYY ’ VI W L
' U [3"1'0 A L7 B T T L PR L TR L

i=1 Y0
sl aL aL
Wiy "9t S Vit Y By M1 .’H = 1
+ L g 3 321 2 32l 22L ]
2 521 5 385038 41 K1 2050300 1 K1~ 385038, UK
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2" 2 27 2, 2
L1 {J21 {é L, v2] 2°L; 2, ® L, 2 3°L; 2 8°L; 2
2 . 2 1 2 il ) 1 n2 il 2 il
i=1{J 0 [av§, avs av18 1 3vih WS
L ., 2%, 2 %Ly ., 3 [ 2L .
W W, w pX v
oo, A1 g2 i1 2 i j=1198503v40 T

PSP B5;7Vs —T-——T~—'e-]v. + ... = B:qW:
30503V4Q J1Yil aejoavio J1] aejOain il 11]

320, 32|, : 32|,
2SS VN Sy Vi e MY e
V30230 40240 M;0%%i0
2/ 2; 2 2
L, 3cL . 3%L. 3¢L. .
I ' 1 o i 2 i 2
b ——————— Vi V¥ o ——— wlawd | X, + | —— VS —5— VS
1 " 1741 ) " il T]Jj[ 1 |' 2 il 42 il
¥idVip Wi03Mi0 V50 T
! \ 2L, ) 3 ( 22 2L 4 .
+ w w + z 0:19Vs - Viq +
BW?O il aw% 1 §=1 |98509vig J1Yi 203500V10 j1vil
2Ly .. azLi azLi .
+ —/———— 6. . + 2 —_— V., W, Ft T V. W,
393’03‘”1’0 J]w1] 3Vipd¥ion 1711 avioaw‘io ilhil
2 2 ]}
oL, . %L, . .
i i
+ W.qVv.qy + — 0 ViqWs + ... (40)
BW;03V. 1%l 3V30%, il -
i i
where BL/aejO = aL/aej » etc. But the term L(ejo,vio,...,wgo)

ej = ejo, s

is constant. Moreover, by virtue of Eqs. (37) and (38) and the companion
equations for w,, all the linear terms in the perturbed variables in
expansion (40) reduce to

3 o n Jgi aii : L, . ) oLy -
L 651 + — V. —— W fdX, + | V5
j=] aéjo J] i=1[/0 av-io il W il 1 BV.iO il
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ol «
+ - Ww. 4])
aw1'0 1 Xj = 24

which are all linear in the generalized velocities éj],vil,wi]. In view

of this, if we retain terms through second order only, the Lagrangian

becomes
LTyt T +T5 -4 (42)
where
R 2
3 3 2 o 1 0 [as [02L ., 9°L; .2
1 3°L L i i i
T =5 z —.—‘.—"'9']9'("4'2.2 I l/——.'—-V +—.——W.
+ azﬁi W., +2 g 82£i B,1Viq + azfi 6 W dx
—_—— V., . —— 0., V. — b, . .
V10w Yit"i j=1 [Bejoavio jriil 3850930 jl 11J i
2 2 2 2
* [?‘21'951 * 37%1'W§1 te 'TE“E;"' Vitwip * 2 ; ( - L? 551V41
3V.| 3W,i avioaw_'o j=1 lae‘]oavio
2
L
'I . .
+ ———— 0. W, (43)
aejoawio jl 11] X = 21}

is quadratic in the generalized velocities,

~

3 3 2 : n Iz1 3 [ oL, ,
T = 2 I oo 0510y + T L l5e5v 841Vs
T g1 k=1 2050000 IVKN T sy o 5= (9950950 91T

' 32(:_ 32|:. azﬂ. .
o gyt iy by
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A

azLi . azLi . 3 aZLi
emmvernel i L Iessvmmnlil Ll 1] oo BN PR Poamreni

i i1V47
avioawio avioawio 1 laejoav 0 J
2L, : 221, . 2Ly
t o B9V P ————— B:qWiy P ————— O3Wy
aejoavio Jril aejo?wio J1l aejoawio J1 il
2 2
L. . %L .
b Vi e Vg (44)
avioawio av-ioaw-io x.l = 2]

is Tinear in the generalized velocities, and

13 3 4 L fzi[EZLT 2 2Ly 2
Ty -V = %2 £ — 0,,6,, +752 Vi !
00 "N T 22\ Ly eeg0900 i10k1 T 24=|Jg [avEg 11 avid
Py 2, Pl 2 Py 2 Py o , ( 2L
It W Wl h Wy v 2 T
8V¥0 1] 3W10 i1 3”10 il awi% il j=1 36303V10 i il
aZEi ) ( 32£i BZEi
+ ——— e.]w-] + 2| Vv W,q + Ayl el V' V"
ZA 3 2 2 2
3L Ly 2 3%y 2 3 L '
1 1 1 1 1
# o Wiy | ["E" itz el [ kil
ORI J] V3o LU - BGJOBY 0
2L 1
15w, (45)
20502W5p J1 1]JJX1 = 2

is free of generalized velocities.
In view of the above, the perturbed Lagrangian can be written in

the general functional term

L = L(ej],ej],Vi],vi],Vél’o . oW, 1sw ])a ji=1,2,3 i=1,2,...,n (46)
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Consequently, the variational equations can be written in the form of
the Lagrange equations, Egs. (35) and (36), but with the subscripts j and
i replaced by j1 and i1, respectively. Unlike Egqs. (35) and (36), the

variational equations possess trivial equilibrium.

5. Discretization by a Rayleigh-Ritz Approach

The variational equations discussed in the preceding section con-
stitute a set of hybrid differential equations, in the sense that the
equations for the rotational motion are ordinary differential equations
and those for the elastic displacements are partial differential equations,
where the latter are subject to given boundary conditions. It will prove
convenient to transform the system into one consisting of ordinary
differential equations alone. This can be done by using a discretization
procedure based on the Rayleigh-Ritz approach. Indeed, let us introduce

the notation
ej](t) = Qj(t)i J = ]9293

p*3 2p+3

V7 (xp5t) = j§4 85(xq)a;(t), Wy (x)5t) = j=§+4 ¥;(x1)a5(t)
(47)
3p+3 4p+3
Voy(xy,t) = j=2§+4 ¢5(xp)a5(t)s Wy (xy5t) = j=3§+4 ¥j(xy)a;(t)
(2n-1)p+3 2np+3
"o G- = eanmnypra P3G Ot ¥ 0xn)a; ()

where ¢j(xi) and wj(xi) are admissible functions, taken as the eigen-

functions of the linearized system. With this notation, Eq. (43) can
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be written in the matrix form

T -;_- {4(t)) Im}ea(t)) (48)

21

where [m] is a constant symmetric matrix having the elements

2
My " g s ok = 1,2,3 (49a)
30°°k0
by 92L, 2L
"ﬁk = [ ————————'¢k(x )dx + —6—~———"'¢k(x )
0 830V4g 28509V -

1 1

J=1,2,3; k = 2(i-1)p+4, 2(i-1)p+5,...,(2i-1)p+3,
i=1,2,...,n (49b)
2

L4 82L %L
Mk J —-———wk(x Jdx; + -a—-—-

vk (x5)

X, = 21

J=1,2,3; k = (2i-1)p+4, (2i-1)p+5,...,2ip*3, i = 1,2,...,n

. ot 49c
f“ LGyl + [BZL" (x; )0y ( )] "
m. = X ¢ X x — daX: ) (X4
jk *5 k -2 Ik
0 aV18 3V.io x'i=9"i

Jsk = 2(i-1)p+a, 2(i-1)p+5,...,(2i-1)p+3, i = 1,2,...,n (49d)

24 aZE 82L
my fo —_*—_3‘/103"1 o3 (%1 Jug (x4 )dx; + m%(x Yy (1)
Xq = 2y
J = 2(i-1)p+4, 2(1-1)p+5,...,(21-1)p+3,
1 = 1.2.---." (49e)

k = (21'])p+4’ (21-1)p+5’!00’21p+3l
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Xi=2-i

%5 2L (o (%0 )+ 82Li
My = Io ———g-w X 29y (% )dx; 53;3 ¥5(x; )9, (x5)
= (2i-1)p+4, (2i-1)p*5,...,2ip+3, i = 1,2,...,n (49f)
On the other hand, Eq. (44) leads to the matrix form

Typ = {a(t)TFIEa(t)) (50)

where [f] is a constant square matrix with the elements

321
905038k

i oL, ) [ 22, )
f.. = f ———-————-¢k X; dx o bR X
Jk o 2%50%Vi0 3°joavio

fjk » Jok=1,2,3 (51a)

J=1,2,3; k = 2(i-1)p+4, 2(i-1)p+5,...,(2i-1)p*3, i = 1,2,...,n
(51b)

~

e 2L
ik~ J ——— Y (xg)dxy + |y (X;)
X

0 86308w10 3ejoaw10 _
it

j=1,2,3; k = (2i-1)p+4, (2i-1)p+5,...,2ip*3, i = 1,2,...,n

(51¢)
2 221 22L .
Fe = | T o o (e + | ay0x)
0 936kgdvig Y 36K03Vip X5 = 44
J = 2(i-1)p+4, 2(i-1)p+5,...,(21-1)p+3, 1 = 1,2,...,n
k=1,2,3 (51d)

25



f [2" Py [ s b: (x; )]
. = ‘—l_—‘__ X. X -‘—‘—"‘
Jk 0 Bekoaw.'o J i 36koaw10 J X.i - 2,.i

j = (2i-1)p+4, (2i-1)p+5,...,2ip+3, i = 1,2,...,n; k = 1,2,3 (51¢)

fik = Jzi -—-EE—-~'¢J(X1)v:k(x1)dx1 + [;-Ef£§—-¢j(xi)wk(xi)}
0 3500 Vi X;
j = 2(i-1)p+, 2(i-1)p*5,...,(2i-1)r+3,
i =1,2,...,0
k = (2i-1)p+s, (2i-1)p+5,...,2ip+3,
by oL, 22l
i = | Ly (g )y + [_,___4, (x; )05 (x; )]
0 V0 vViod¥io X;
j = (2i-1)p+s, (2i-1)p*5,...,2ip+3,
i=1,2,...,n
k = 2(i-1)p+4, 2(i-1)p+5,...,(2i-1)p+3,

Finally, from Eq. (45), we can write
Ty - Vo = - Haq(t)} [K](q(t)}
01 ~ " 29 9

where [k] is a constant symmetric matrix with the elements

2
3 L .
k‘ = - s J,k = ],2’3

32l .

S e N P = S
jk - = f ¢y (X:)dx,; ~ ¢k X3
0 28553V LN R 38503V40 .

i=

jo=1,2,3; k = 2(i-1)p+4, 2(i-1)p+5,...,(2i-1)p+3,

i=1,2,...,n
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(51F)

(51q)

(52)

(53a)
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~

2L

K = Jli 3 (x. )¢ 2L x0)
jk 361 aw LR R I Ui Xy
0 23%50%%i0 K Joaw 0 x; = 2

j=1,2,3; k = (2i-1)p+4, (2i-1)p+5,...,2ip+3, i = 1,2,...,n

(53c)
[ (32£ azi azﬁ- ,
w7 1,”2 () + —F a3 (xi)glx;) + — 430x, Do (x;)
10 10
22,
+ ———————;— $5(x3 )0 (x5) + 01 (xp)op (x5)
av103 30 J
2L
{——2- 030 )y (; )J
0 X,i=2,-i
ok = 2(i-1)p*4, 2(i-1)p+5,...,(2i-1)p+3, i = 1,2,...,n (53d)
) py ol 221, |
ik =T JO EV:SEW-B'¢J(X Y (%3 )dx, 3;;65W;6'¢j(xi)wk(xi) .
L .i |
j = 2(i-1)p+4, 2(i-1)p*5,...,(2i-1)p+3,
i=1,2,....n (53e)
k = (20-1)p+4, (2i-1)p+5,...,2ip+3
‘ ! )()azii()'<)32L*<)<)
[ S J T by (% (xg) + = b e xg) + = ey (g D (xg
0 aw10 CUH J aw§
2L ]
S [V u0g) + ulkdui ()| o
i0 i0
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1
5 0 (%0 (%)
ECT Ix; = ¢
ok = (28-1)p+a, (21-1)p*5,...,2ip*3, i = 1,2,...,n (53f)

Introducing Egs. (48), (50), and (52) into Eq. (42), we can write

the Lagrangian in the matrix form
L= HaT ey + (@ T[F1ay - 1a} [KICa? (52)

Using the approach of Ref. 21 (see Sec. 3-4), we can write Lagrange's

equations in the matrix form
d_faLl _ faL| - (55
dt {aé} {aq} o 55)
Hence inserting Eq. (54) into (55), we obtain the equations of motion
[mltqr +([F1 - [£1)(q) + [k} = {0} (56)
so that, introducing the notation
T
(gl = [f] - [f] (57)
where [g] is a skew-symmetric matrix, [g]T = -[g], we obtain

[mItq} + [g]{a} + [k){q} = {0} (58)

where [m] is identified as the inertia matrix, [g] is a "gyroscopic"
matrix and [k] is a stiffness matrix which includes terms due to elastic,

gravitational, and centrifugal effects.
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6. Liapunov Stability Analysis

We shall seek criteria for the stability of motion in the neighbor-
hood of the nontrivial equilibrium by means of the Liapunov direct method.
This is equivalent to the problem of stability of the perturbed motion
about the trivial solution. In terms of the discretized system, the
perturbed motion is described by the vector {q(t)}, so that the interest
1ies in a stability analysis about the trivial equilibrium {q} = [0}.

It was shown in Ref. 15 that the Hamiltonian is a suitable
Liapunov function for the type of problem at hand. Assuming that the
system possesses a certain amount of internal damping, however small, the
equilibrium is asymptotically stable if the Hamiltonian is positive
definite. In terms of the perturbed variables, the Hamiltonian has the

form

H=Ty - Tn * % = %{é(t)}T[m]{d(t)}+ ;{q(t)}T[k]{q(t)} (59)

But the function Toy is positive definite in the generalized velocities

dj(t) by definition. Hence, if the function
1 T
k= 5{q(t)} [k]{q(t)} (60)

is positive definite in the generalized coordinates qj(t), then the
Hamiltonian is a positive function in the generalized coordinates and
velocities and the equilibrium is asymptotically stable. The function

kK is positive definite if the matrix [k] is positive definite. Whether
[k] is positive definite or not can be ascertained by means of Sylvester's
criterion (Ref. 1, Sec. 6.7). The matrix [k] will be referred to as a

Hessian matrix.
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7. Natural Fre iiencies of the Complete Structure

The Liapunov direct method provides qualitative information con-
cerning the stability or lack of stability of an equilibrium configuration.
Similar information can be extracted from the system of equations (58)
via the eigenvalues. In addition, the eigenvalue problem yields results
of a more quantitative nature in the form of the system natural frequen-
cies and the normal modes for the complete structure, where the latter are
defined later. It turns out that Eqs. (58) lead to an eigenvalue problem
of a special nature. The nature of the eigenvalue problem can be con-
veniently discussed by converting the set of equations from second order
to first order. Indeed, if the configuration vector {q(t)} is of
dimension N, then we can introduce the 2N-dimensional state vector

{x(t)} in the form

{q(t)}
{x(t)} = { ) L (61)

\{Q(t)}J

No confusion should arise from denoting the state vector by {x(t)}, because

the symbol X4 used to denote the position of a point in the elastic

members represents a spatial coordinate independent of time and not a
time-dependent generalized coordinate. Accordingly, if we introduce the

2N x 2N matrices

q- m] [01} o - [[gj m} (62)
hOJ [kl -[k] [0]

then the set of N equations (58) can be transformed into a set of 2N

first-order equations having the matrix form
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[MI{x(t)} + [61{x(t)} = {0} (63)
where [M] is symmetric and [G] is skew-symmetric,
M1 = (M7, [6]=-[6] (64)

because [m] and [k] are symmetric and [gq] is skew-symmetric.

The matrix equation (63) is of the special form treated in Ref. 20,
so that the eigenvalue problem can be solved by the method developed
there. Hence, letting

At

{x(t)} = e""{x} (65)

where 1 and {x} are constant, we obtain the eigenvalue problem
A[MI{x} + [G]{x} = {0} (66)

It is shown in Ref. 20 that the solution of the eigenvalue problem (66)
consists of 2N eigenvalues A, and eigenvectors {x}, (r = 1,2,...,2N),

where the eigenvalues consist of pairs of pure imaginary complex conjugates,
Ay = * iwp, and the eigenvectors also consist of pairs of associated com-
plex conjugates {x}, and {x*},. (r = 1,2,...,N). Moreover, the eigenvectors
are orthogonal in a certain sense. Reference 20 provides an algorithm where-
by the eigenvalue problem can be solved in terms of real quantities. The
method will be used later in this work to solve the eigenvalue problem for

a specific spacecraft.

8. Lagrange's Equations in Explicit Form

Lagrange's equations, Eqs. (35) and (36), are written in a

general form. Before obtaining the nontrivial equilibrium and the
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corresponding variational equations, we must express them in a form in
which the various coordinates appear explicitly. By virtue of the assump-
tion that the satellite mass center moves in a circular orbit with

2 in Eq. (5). Moreover, the

. 3
orbital velocity ¢, we can replace K/Re by @
first terms in Egs. (4) and (5) can be ignored because they are constant.
In view of this, if we recall that the Lagrangian can be written as
L =T -Vg - Vgp - Vgg» then we can substitute Eqgs. (4), (5), (15), and

(23) into L, and obtain

L(t) = 3 wH (O3 + wiTeks + 7 + %—tar[d(o)]

3 2., 4Try(0) LA 2 4 12
-5 g [0V e,) - 5 Il [Pyi(vi™ + wi%)
+ Elvi2(1 - g-vgz) + 51y1w32(1 - 2 wi?)lax, (67)

where Py ; is the axial force at any point of the slender rod, and

L N NI R AR LR (682)
i=0 i=0
2. .
" 121 {f01 pi[h§0) ¥ '$0) ¢ ulO300 7Ty ax, + mi[h§0) + rgo)
+ ugo)][ziJT{ﬁi} ] (68b)
X'i = 2,1
S TRRAT ol RTINS . T,
Te=5 iil'[fo pilu;} {u ddx, +m. {u} {Ui}|xi _ 21} (68c)
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in which [J(O)] is the inertia matrix of the bbdy in deformed state in
terms of the reference system xyz, {K} is an angular momentum matrix due
to the elastic velocities, and Tp is the kinetic energy due to the elastic
velocities. The elements of [J.] are given by Egs. (9) and (10). Intro-
ducing the notation

Iy = oiLlhys v el u)?D, Jiqyaq) = mllhyrvg)Bothym)?1]

1 1
Jigg = 01l #x) 24 (hyi#w 02T, J.on(24) = mo [lhygixs )2 (h g )2
i22 © PibiMxdiTAy zi™/ d Y3020 PV i zi™i Xi=2
Jiq3 = oL h s )24 (h o #v:)2T, 3eaa(2s) = moL(ho4xs )24 (hy oy, )2
i33 7 Pl iy yi Vi’ 4 Y33V LR B yi X:=,
912 = Ji21 = ei (gt (hyy+vi)s J595(24) = Jyp9(24) = -my(hy;
l
UL Py
Ji13 = Yigy = eilhyi*xi)(hzitwg)s Jyq3(25) = dygp(ei) = -my(hy
+X1.)(hz1.+w.i) X:=Ls
1 1
Hvidhgi g )i, o
T =1,2,...,n (69)
we can write
li ~
[a1-]=jo [353dx; + [3;(25)] ~ (70)
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In a similar way, from the second of Eqs. (68), we have

n -R,i -
K} = = J {K; hdx; + {K;(24)2 (7)
i=1 (Y0 1

In view of the above, the Lagrangian densities can be written as follows

L;(xj,t) = ] {w }T[J(O)]{w} + {w} {K } o+ 5 p,{u } {u } o+ 2 Q tr[J(O)]
~(0) 2 2y 1] ) 5 ,2
- E-Q {25} [J gt - (v + W ) - E’EIzi vic( - 7 Vi )
- l-EI : w"2(1 -3 w!z) i=1,2 n (72)
2 y1 1‘ '2’ 3 ? 9L 9000y

whereas the parts of the Lagrangian associated with the discrete masses

are

0 . T,
Liait) = 1 @T0{ 1w + o) + LmgagTap .
i~

(0)

2er10{? (007 - 2 e 0! (0)102p) (73)

+
l\)]-—‘

From the context it should be obvious when brackets and braces denote
matrices in Eqs. (67) through (73) and when they do not.
Substituting Eq. (67) into Lagrange's equations for the rota-

tional motion, Egs. (55), we obtain
3 T r,(0) 3 T) ) 3 7] (0)
[3—‘,—3— {w) } (08777 {w} + (3—53- {w} | (K - 3 @ [T ab | Y1)

-2
ot

—N

;Z;{wﬂ]([a(o)] Wy +{(K}) =0 §=1,2,3 (78)
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Moreover, Lagrange's equations for the transverse displacements v; are

N

%'{w}T [ [J(O)]] () + () ( {K }] ! 102 ¢ {5%; [3$0)]

2 T (5 r;3(0) .9 T 3z
{2'a} (3—\;:"— [J'l ]]{za} s~t- {{w} 5\'[? {K} + Pi v.l‘

f n 2 n
Te 2 (- Pyyvi o+ g.EI . ViV4 )&-———— [-EL,; v; (1
X4 axi

4
- Vi) =0 L 0<xg <ty P=1.2,.00 (75a)

which are subject to the boundary conditions

-(Pyi - 3 Elz vi?) vi + 22 - el v (0 -5 v
+ 1 ()] [J(O)]{ )+ tr g [J(O)J “3(n,} [J(O)Ju )

s ()T 55 = (K} + 0§ ¥5) = 0

at xi=2i’ i

1,2,...," (75b)

n 5 |2

v. = 0, v% =0atx; =0, 1=1,2,...,n (75¢)

Similarly, Lagrange's equations for the displacements w, are

2

- ( -
7 1 {%1— w$°’1]{w} + ) [._. (K} + % af tr [3—37 [J?O)Jl
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3.2 15 30 3 Iy .
5 07 {t,) LSW_.[J. I teg) - 22 W) SE;-{K} + oiWy

12 )
- §~wi )1 +p,0 =0, 0<x; <2, 1=71,2,...5n (76a)

which are subject to the boundary conditions

5 II2 ] " 5 '
-(pXi - é- EIZT Wi ) w'i + giT [EIy'i w1(] - é‘w-'z)}
1,2 T 3 r4(0) 3 rq(0)q T 3 4(0)
+ ‘2" Q [{w} W [J‘I ] {w} + tr "aw [J 1 -3 {23} _3_VTI1— [J ]{Qa}
- a T i + TW . =
1t {{w} "y {K} p1w1] 0
P at x, =24, 1= 1,2,...,n (76b)
n 5 02 ——
ELy; will - 3wi%) =0
W, = 0, w% =0 at X; = 0, i=1,2,...,n (76c¢)

9. Equilibrium Equations in Explicit Form -

For a gravity-gradient stabilized satellite, the angles oj(j =
1,2,3) are measured relative to an orbiting system of axes. The orbit
being circular, with the orbital angular velocity being equal to @, the
orbital axes rotate relative to an inertial space with angular velocity Q
about an axis normal to the orbital plane. This axis is denoted by c (see
complete definition later). Hence, the angular velocity matrix {w} can

be written as
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{w} = Q{Zc} + {w}r (77)

vhere {2.} = {zc(ej)} is the matrix of direction cosines between axis ¢
and the reference system xyz, and {w}, = {w(ej,éj)}r is a matrix whose
elements are the angular velocity components of system xyz relative to
the orbital axes. They are linear combinations of the velocities éj
(j = 1,2,3).
The equilibrium equations can be obtained by deleting from Egs.

(74) - (76) all the terms involving derivatives with respect to time.
This implies that we can replace {w} by {2 .} in these equations. Hence,
the nontrivial equilibrium must satisfy the general equations for the
rotational motion

(e (07 2 a7 () - 302,17 10(0) gg—J— (23} = 0, § = 1,2,3 (78)
as well as the boundary-value problems defined by the differential equa-

tions

+(0) (0)] T 5 ~(0)

1.2 T 3 2
5 97| {2} 5v_i[J Hac) + tr ——[J 3{25} v; [9; " ea)

| 2
5= [Py - 5 EL; vi2)vi] - AL URER? 1 =0,

¥ 2 x2
0<x; <8, 7=12,....n (79a)
and the boundary conditions
'(Pxi -3¢ v" )v + —3—-[EI vi( - 5 vy )] + —-9 (2.} [J( )]{1c}
2 Z1 i X rARS c

37



e 2007 - 3T 5%;—[J§°)

é—v‘i— ]{Ea} =0

at xi=2i, .i = ],2,-..,“
- B3 - Svi?) =0 (79b)
v. =0, v% =0at x; =0, i=1,2,...,n (79c¢)

Moreover, it must satisfy a set of equations similar in structure to Egs.

(79), but with v; replaced by W,

10. The Variational Equations for the Discretized System

The variational equations for the discretized system were obtained
earlier in the form (58), where the matrices [m], [g], and [k] are defined
by Eqs. (49), (51), (53), and (57). Although the equations just mentioned
have the advantage of revealing the symmetry of [m] and [k] and the skew-
symmetry of [g], the formulas for deriving the elements of the matrices
are not the most suitable from a computational point of view. Indeed, we
wish to present a procedure whereby the actual derivation of the variational
equations is performed by a digital computer.

Consistent with earlier notation, we shall denote quantities
associated with equilibrium by the subscript 0 and perturbed quantities
by the subscript 1. With this in mind, we can write the Lagrangian in

the form

L=Lg+ Ly (80)

T..(0 T
Ly = %-{w}o[d( Ntulg + whyiKig + Tgg + % 22 era (0,

T
- -3-92 {za}o[d(o)]o{za}o - Veo (81)
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and

- {w}I

+{

21

Z

in which

T T
({0 3gtutg + 3 w00 g, + 3 wigfa 01,

T T T
(0] (alg + Wi Kig + WKy + WK + Ty

2 T
2 tr[a003 - a0’ (0, 10V 10,00 - 3 220,101 10,

3 20,3 10O tay}g - 3P0 19103, 1050 - vy

3
{w} = {w}o + {w} = Q{2 }0 + 2 H——-{m}} Q4 [———-{w}] }

| —

i=1 ae10 3610

3 3 52 52
LI l————(u}|qi95 * 2 2w q;9;
i=1 j=1||30403830 38350260

3

i=

3
{2} = {25}g + {23}y = {2} *+ 2 [Wza}}qi

[a(0);

[————--{ a}]qiqj

DIMD

n T l.i,.
[z][a a5 = 5 CegT|[ 03530 + D80 T2y
i=0 0 )

0 0 n (124 195
(03 + @7, = %4 + RACY Uo [s-vl,-g]m
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(83)

(84)



" : -1
129 1 {$2J1 ) 2235 } 0 [azd1 2]
W. = Vi Vs —_ w .
wig) 1 (vl T Dvggmg) w5y N
20;09)] 305 (24) 13205(29)] 2
ad; (2 ad; (2 BEDTEY
o e N C DI s }w11(2’) 'z . 3 !Vi1(1i)
i 3V,io | Lawio | {_ 3Vio j
2 2
3¢Jd. (2;) aJ.(z.)]
+ L——|viq (g )wyp (a) + %- ———l—7l-rwi$<zi) (2] (85)
2Vi0®%i0 Mip | j
n 23 A
= s [ TRpex; ¢ k(a2
i=]\ 0
{K}O.= 0
n 2] (oK, K, K, K
{K}y = & J e Wsq + {—1 : : Wi
1 i=1 Jo 3V10 il aw_io il av_io il W 0 il
2, 2y
37K 3K Ki(2s)
R P i b viegg e+t v (ag)
avigwig| 117 VoW 1 1 i0
aK.(2.) oK. (25) oK. (23)
it™y _ il\*y . v (g
+{ aw-io W1-|(9.1) BV% V_”(Q.-') ] w-|'|( i)
azki(zi) aZKi(zi) (22) (86)
- s Jw! — L (23 )Wsq (25
+ T vi(24)wiy (24) V150 Vi (24)wiy (24
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Note that Eqs. (83) - (86) represent Taylor's series expansions of {u},

25}, [J(O)], and {K} about equilibrium. Moreover, we have

Teg = O (87)
and :
n [res
= ] - f&1 . . T . . T . [ !
REREN 2 2. | 1
"7 fo o3 (vin *widdxg #milviy #wg) o o (88)
as well as
2 \2 2 2 2
1 7 1) avigl® , [a%ig 9 V50 5 [3Vi0
vEO 2 L Pxi + EIz1 1 -3
i=1 Jo 3X; aXg | 3X 21 ax; i
I W oW
+E1 10 - g- 00 | Lax, (89)
y Bxiz ax-i
J
and
1 n 21( BV-O 3V.” BW-O BW.” BV_” Bwﬂ 2
( ‘ (
V. 2 2 2 12 2
) V10} Yiolm M s 12Y40)%| Vi
? Bl 39X J X2 . 7 Hzi 3x¢ J ax
(1 i 1 \ i 1
- ) r ( \
[ov. 12](52y. ] a2y av. |2 128y, 12
5 i0 i0 il 5 i0 il
+ 2 EIZ1 1 - + EIZ 1 - >
2 | ax; axZ | ax ! ax; aX
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2 2
10 E1 V50 V4 3"1‘1] ? Vﬂ]
21 2
ax; X Laxi J axf J
2 1z 2. 12(.. 2
o1 oW 0] 0 W_io 3W1.' ) §- - 9 in 3W1..|
yi {ax J a;?,/ ax; 2 Y axg J i |
[ oW \2 82w I 32w raw ’2 azw 2
e 2 EL. |1 .5 |20 ol 2, oo 5| Mo il
i i
y i 2 [axi , ax? J ax? Y ZLax1 j ax2
2 (.2
Win 9Wen |OWsq!|3%W.
- 10 El.. 10 i0 il] il
U e o || | % (s0)
3 1 ]

To obtain the variational equations in terms of the discrete co-
ordinates qj(t) (3 = 1,2,...,2np+3), we must insert the modal expansions
(47) into Ly and perform the indicated integrations over the spatial
variables x; (i =1,2,...,n). Because the resulting expressions are very
lengthy, we shall not write them explicity, but proceed with the derivation
of Lagrange's equations instead. To this end, it will prove convenient to
denote constant terms by the subscript . and terms that are linear in the
generalized coordinates qj(t) and generalized velocities éj(t) by the sub-

script 2. This enables us to write

Ly (8 T (0) 3 T (0)
o, o] o, oo,

+ <[J(°)]1)sz}o + ({K}1)2J j=1,2,3 (91a)
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ki r{w}T] {—3—'{K} ] + {m}T (——— K ] + (—9—'r 1
- - . . . . E]

J=4,5,...,2np+3 (91b)

L h
% (an {th {[J(O)]O talg| {36_ (w) ] [[J(O)]o [{w}]lz

' )
+ ([J(O)J]L ), + [{K}] J - 392 [ 12,) }2 ([J(O)]o “a}o]

\

-3 92 (E.q—— 3} ] [[J(O)] ({23}1]2 + [[J(O)]]R {26}0]
J

L 4

j=1,2,3 (91c)

Lo 1L s 00

+ ({w}I]R [{535 [J(O)]1]c {ulg + &5%; {K}]IC}

12 3 (0)7. 1 _ 352 ¢ 37 12 y(0)
t 50 59; [tr [J ]1J2 AR (aq_ (Y J1?Q{2a}o

J

a2l T (a0 R
3 Q L{Z }1}2 (an [J ]] c{la}o {aqj E'l e
§ 84,5, 20p+3 (91d)

which enables us to write Lagrange's equations for the perturbed motion

in the compact form
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2

[

[Sﬁf'{“}II ([J(O)Jo {w}o]+ [;%j-{m}I] {[J(O)JO [{w}]T
j ¢ | j e ! |

[ (0)q | (1] . [ , T) (o )
+ [J ] | {wlg + (K}l D -3 @ — {: | [J )] {5 )
DU TS g 0,

11 T o) 1 o)y
JC L[J ]0 {{Qa}]JZ + L[J ]]jg {PaloJ

- 2 3
3Q {8q3 {za}]

_d 0 T [,.(0)
dt {——— {{D}]Jg [[ ( )] {w} } [;}: {w}]! l[J ]0 i({w}-l"n

| ),
qj jc L v

o | o
+ {[J ]])Q {wly + {{K}1]2}:> 0,3§=1,2,3 (92a)

{w}g <2 [an [00)y ]z{w}o + {ag_j {K}]L>
+ ({w} ] <i[aq3 [(0)7 IC (wyy + [an {K} ];>>

o? 5%_{tr (00 } 32 (ay) {—37 [J(O)J1] {2y}
J L %

+
l\)l—l

2 N p (0) 3
- 30° {24} — [J L.} o+ |2V
[ a ]IZ {aqj [ ]1]c (L3} (3qj 5112

( (
d T 3 T 5 _
- — {w} {K} + {w}, |— {K} + | =0
dt <l T]z laﬁj IL 0 [an ]1 [an E1]>

j=4,5,...,2np+3 (92b)
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As mentioned already, the advantage of Lagrange's equations (92) over
those derived in Sec. 4 is that Eqs. (92) permit automatic derivation by
means of a digital computer.

Before specializing the equations to a particular satellite, let
us derive an expression for the axial force Pxi in terms of matrix nota-
tion. The axial force Pxi is due to centrifugal and differential gravity
effects. Introducing the modified potential energy density associated

with member i

vy mod = - L o200 00{ 0scy + er00{07 - 30 T10{105,0)
- %-QZ({SLC}T[Jgo)(Xj)]{lC} + tr[a$°><x1.>1
- 3{za}T[J$O)(xi)]{la})s(xi - 25) (93)

where the terms inside parentheses and multiplying G(xi-zi) are due to the

tip masses, the axial force density can be written in the form

A

- Y4 mod
Pl = - =
- " ~(0
= %—QZ({RC}T[Jgo)]'{zc} + tr[J§°)]' - 3{za}T[J§ )]'{za}) (94)
in which we introduced the notation
2(0)q, o 2 p5(0)5 3 (5(0) e
[Ji ] - 3X-i [J'i ]+ ax'i [J'i (xi)]s(xi 11) (95)

Observing from Eq. (67) that Py; is multiplied by (v;-2 + w%z), we ignore
any transverse terms in [Jgo)]', so that using the first of Egs. (68) and
gs. (69) we obtain the approximation
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0 0O
(807 < 2(h; + x: ) . 6 (xs -Ls T 1o 1 0] [&:] (96)
i Xi i Qﬁ mid(x;-27) ) [24 L
0 0 1

Inserting Eqs. (95) and (96) into Eq. (94), we can write the axial force

Py; at any point X; in the form of the integral

'3 ~ 23 !
i i
Qe A Qs A |
+ fx’ 30 (g )des] - 30e3 T fx’ 380 (5, )deg102,1) (97)
i i

where, assuming that o; = const, we have

2

Ls . 1
(13 00540 = (oiltnggea)? - (hygony)?

xi

0 0 O]
+2m1(hxi+ni)>[z1.]T 01 0‘ [24] (98)

0 0 1

It follows that the desired expression has the form

.2 /] 2 2
Pt = 22 <§ 0illhyi*+24)% = (hyy+x4)7]

( 0 0 o |’o 00
b th ) S 1 001 0 1 0] Dgdene - tefne]’ 10 1 ol [4.]
ixiT /o ted L2yl I At 7 LYy %
', 00 1l 0 0 1

A6




0 0 O
T T
- 32} [25] {0 1 0} [25]1{23} (99)
0 0 1

11. The RAE/B Satellite. General Formulation.

a. Equations of motion

Next let us specialize the equations to the case of a satellite
consisting of a rigid core with six flexible booms, as shown in Fig. 6.
First, we wish to determine the matrices [2;] of the direction cosines

between axes X:¥52s and xyz. From Fig. 6, it is easy to verify that

[ ca Sa 0] -ca sa O]

[Z]] = | =Sa Ca 0 . [22] = | -Sq -Ca 0
|0 0 1] 0 0 1
-ca  -Sa 0] [ ca -Sa 0]

[23] = | s -Cca 0 s [24] = Sa Ca 0 (100)
0o 0 1 0 o 1]
[0 sg cB] 0 -s8 -c8]

[15] = 1 0 0 N [26] = ] 0 0
| 0 8 -sB . 0 -c8 s8]

where sa = sin o, Ca = €OS a, S8 = sin 8, and cB = cos 3. Moreover, to

write the angular velocity matrix {w} in explicit form, we must specify
the rotations e; (j = 1,2,3). Assuming that system xyz is obtained from
system abc by means of the rotations 6, about y, -8y about x, and 83
about z, and recalling that axes abc rotate about ¢ with the constant

angular velocity i, matrix {w} can be shown to have the expression
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(-(592 C93 : 59] COZ 593)

{w} =0

|
! coy CB
\ 1 +92

592 593 - SQ] C92 C93

)
l

[—ce3 cey sejy 0] (9]

} + ! s83 €9 ChA3 0! ‘éZ(

|
J

where s¢, = sin 2y, cey = cos 27, etc.

0

Se] 1.

l
|

P
: A |
L3

Because the direction of the

(101)

radius vector R. coincides with that of axis a at all times, the direction

matrix {za} can be written as

{2y) =

C61 592

C82 coy - $97 s82 s63 ]
-(CGZ s63 + S8y s$82 C83)

It will prove convenient to rewrite matrices {w} and {2,} as follows

{w) = [8]5 [6%]y (8} + {o)3 + a [a]306]y183,

where

C83 563

[9]3 = |-s63 €O

[e]] =

0

*
’ [9 ]] -
0 0
$6y €

-

{9}2 =

(102)

(103)

Introducing Eq. (103) into.(4), and recalling Eq. (68), the kinetic energy

becomes
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U S N U (O
= Lot )] 20] 00O o35 1971 10 + T 0070] 197] 10003 vy
Lol plOy g e iy T o2 0] oo v ] o e g
SRRSO M AL ROV ARG ER A S U ) I S LU R ER B
soce T rel] e} o+ 2 a2 ] (03] 163} 1002 o, [0 vop

= LT ¥ (971 (%] 181 + (2 TL8M] [01] (9] G2y

T ¥l % 1 .2 .

. T .
+ 0 63] Tel] 19" [6%]y (8) + 0 (81] [6]] [01; [0 (b}
T
+Q {e}; (6], (K™} +;_s22 {e}; [e]1T [0*] [e], (e}, (105)

where [J*] = [e]; [J(O)] [e3] and (K*} = [e]g {K}. Moreover, inserting
Eq. (103) into (5), and recognizing that {za}T = - ({e}é)T [9]1 {611,

we obtain the gravitational potential energy in the form

Vg = - b a2 tr 10007 4 2 0ogey)T e1] [63] (0007 [o1, Ledy (-t0),)

1 T * )
- -;-92 tr [3(0)y + 3 a2 ({o}}) [e]] [9*1 [ely (o} (106)

where primes indicate differentiation with respect to 65. Expanding the
matrix involved in T and Vg, and recalling that L = T - Vg - VEA - Vggs the

Lagrangian L can be written in the form

= | * 2 * 2 * 2 * .2
L 7 [J] e] + (J22 c e] + J33 S 9] +2 J23 S@]Ce]) 82

49



e

* * «
2 (J23ce] + J33se]) 9293]

+

*

33

*
J22 Se]C61C62 + J

1 4% 2
6 L3 V. 2 aw.‘
RN ISR S paat
i=1 /o i) o)
6 12 32y.12 [ 3v:) 2]
-1zf El . oLy 2
Z =10 \ ) L2 x|
s (iﬁ]zwdx
2 LBXU ] j

K?é] + (K;ce] + K§se1) é2 + K; é3 +

5261)]é2 + (J§3 c81Coy - J;3 s62 - J

1

2

*

23

-
e on
—

* . o o M
2 (31pc09 + 9)3507) 898, - 2073 byb3 + J35 6

2 .2 .2
Jm (ui v, ot wi)dmi

.i

2 ()50 + I}, serce, - JT5 coqcop)éq + [-97, c8y s6y

*
56]C91C92 - J;3 S61562 + J23 C92 (c26]

56102)83 - K] s,

* * ] 1 2
Ko s6ycop + K3 ceycep} + s [5 (J1] + dpo + J33) + > J1] (s%09
3c292) + %—J;Z 526] (C262 - 35292) +4 J?Z $81569CO2

(c262 - 35292) - 4J;3 CByS0p COy + J;3 $67C0 (35202

(107)

To obtain Lagrange's equations for the rotational motion, we intro-

duce Eq. (107) into Eqs. (35), and obtain

* * * 2 2 -2 * * ..
[(933 - Ipp) s8y¢o7 + Jpz (c%0y = s7m) 185 + (), say - 75 €0))byh,
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)
'

+

+

+

+

+

-+

(-J33 567 + J33 c81)8pb3 - (K% sey - Kg cey)é,

2 {J], c01Cop + Jy5 507¢87)07 *+ [I7, $8158p - J]5 COy56,
(333 - J5)(cPoy - s2oq)coy - 4 U35 coysoqcepléy

(935 se1cop + J53 07c8p)63 - Ky coqcop - K3 sey cop}

a2 [4 0], coys8pc0p + (Jpp - J33) sercey (cPop - 3s26p)
4 5;3 so1sepcop + I35 (c2ey - s20y)(3s%, - c26p)]

g—t [J’]k] 8 - (JTZ coy + J:3 Se])ég - J;3 63 - K]*

L (JT1 sep + JTz $87C62 - J?3 c8ycer)] = 0 (108a)

Q {[JT1 coy - J?Z $81s8p + Jf3 co150,167 + [-J7, ceqcep + JEZ $61569C87

+

+

+

+

J33 coyseysep - Jy3 s61c0p - Jpg s0p(cPey - s261)16p - (J33 coysey
)3 €8y - J53 $81589)63 - K| cOy + K3 50956, - K3 07565}

a2 [4 J); sep cop + 4 3], soy(c2o, - s26p) - 4 Jp, s2

871562C6
4 313 coy(c2ep - s20p) + 8 Jpq 567C01S0pcEy - 4 J33 cPoy56,CE,]
%{‘{[ng c2oy + J%y sZey + 2 Jyy s0qc0718p - (Iyp coy + U753 58)8)
(J55 €Oy + %5 $67)83 + K3 coy + K3 so7 + @ [-07, ceys6p

ng $61C071CH2 - J?3 se1s6p + J;3 (c291 - 5261)c62

J33 seycorcep]}l = 0 (108b)
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- 0%, a4 (g

* 2 * : 2 * * .o
12 8y + Jy3 seycey)e; + [(J5, - Jpp)eoy + Jpg 611876,

*

12 €

+ 3% 6.8, + 0 a6, + KX A * A
23 0183 * Jy3 €803 * Ky 8y *+ Ky eyt

+ 0 {[-? J?z 50, + (J;1 - J;2) 5918, + J3s coyc8,16y

+ [(93, - J3,) ceysep - 2J%, sejcejce, + J§3 567592

+

J;3 (c261 - sze])cez]éz + (J;3 S8, - JT3 581CH,)03 + K; 56

Ky sojco,) + o2 [-0%, (s?a, - 3c%sy) + 833, - J35)50158,C8,

+ 37, sZoq (cPep - 3s%0,) + 4055 ceysopcey

2

J;3 se]ce1(c262 - 35%85) ] - %f.[-d?3 é1 + (J;3 coy + J§3 561)é2

<+

J33 63 + K3 + 0 (-J]3 sep - J33 seqcep + J33 ceqcep)] =0 (108c)
Considering Eq. (36) in conjunction with Egs. (69), (99), (100),
and (102), and letting i = 1, we obtain the differential equation for v,

o {(hx] + x1) [(w]Ca + wZSG)(w]Sa - wZCa) - 392 (Za]Ca + RaZSa)(za]Sa

lazca)] + (h_y'l + v~|) [(w]Ca + wZSa)z + w% + 292 - 392 <(2a]Ca

+

2
laZSa)Z + £a3>] + (hz] + w])[w3(m-|5a - wZCu) - 392 9’33 (la]S(l

R.aZCa)] + &:J-I (Cc:w1 + Sawz)} - g—t— p-l [-(W«l + hz-,)(w]Ca + sza)
* by *+x) w3+ W]

d 2 2 2 ) 2
P {(2c150 = 2epCa)” + 23 + 2 - 3[(25950 - 259C0)
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* 2,30 % g o1l + 2102 = (g +x)2T 4 my (b + 5103 v

5 ' u2 32 " 5 t? _
7 ey v >+;7['Elz1 v (=25 +pyy =0,
]

0 < xy <2 (109a)
which is subject to the boundary conditions
vi(0) =0 , vj(0) =0 (109b)
m {(hgy + 21) [(wgca + upsa) (wisa - wyca) - 3 8 (2,qca
+ Lapsa) (24750 = 29¢a)] + (hyy + vq) [(uyca + wpsa)?

+m§+2§22

-3 92 <(9,a~|Ca + lazsa)z + £a§>] + (hz1 + w]) [w3(w*|5a
- w2Ca) -3 S22 2a3 (la]Sa - lazca)] + Q] (Caw] + Sawz)

) .
< 3% [-(w-l + hz]) (w-ICa + wzsu) + (hx-l + Q]) w3 + v]]

2

- o? <(2c15a - JLCZCa)Z + 2.3+ 2 - 3[(2;50 - zazm)z + za§]> (hyy

*27) v} + -g— El,, v]'v.']'z
9 1] '
(109¢)
" 5 12
EIZ] V-I (1-§V-I )‘X]'_'R,]:O J
Similarly, the differential equation for W, is
01 {(hyg + x7) [-uglujca + upsa) + 307 La3(251Ca + 24550)]

+ (hyy + vq) [ogluysa - upca) - 307 253 (2q50 - 25pca)]
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2
+ (h,g +wy) [ w? *u, + 202 - 30° (za$ + zag)]

zl
. 9 .
-V (w]Ca + wZSa)} - 3T Pl [(hx] + x1) (wysa - MZCa)

+ (h V1 + v])(w Ca + wpsa) + w]]- 5;;— - qf {(ZC]Sa - ZCZCa)Z

2 2 2
tigt 2 - 3[(za15a - zaZCa) + £a3]}><{%-p] [(hx1 + 21)2

2 . ton
- ey + )T+ myhg +eq)d wg o+ 3 EI, "‘1W1>

2
2 [-EIy] ] a - ,_ w] )] +P;0 =0, 0<xy<oy (110a)
Xy

where W, must satisfy the boundary conditions
wi(0) =0 , wi(0)=0 (110b)
my {(hyy + 27) [-uglwjca + wpsa) + 30° 243 (2310 + 2505a)]

+ (hy] + v]) [w3(w1Sa - w2Ca) - 392 2&3 (la]Sa - laZCa)]

+

2 2
(h,y + w]) [wy + wg + 208 - 3¢2 (zaﬁ + 2455)]

- ¥y (w1co + wpsa) - 2= [lhyg + 1) (wpsa - wpca) + (hyy *+ vq) (wyca

+

wpsa) + wy] - of <(2.c'|Sa - 2C2Ca)2 + zcg + 2 - 3[(24950

2 ' ] 1]
"aZc")2 + 2a3]>(hx1 t oyt # g'EIyl w]w]z

) n2
B (03], L

(110c)

EI ! (1 -gw{z);

yri x] =27 =0
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In the above

wy = - 0(s6,c05 + 50,C0,503) - ce3é] + 058,40,

wy = (s8ys83 - $67C0,C05) + 6307 + ce]ce3é2 (111a)
w3 = QCO1CBy + $BY8y + B3

R,a-l = C92C63 - 591592563

Rap = -(c6,s05 + 56y56,c8,) (111b)
9133 = 061562

by = -(sezce3 + se]cezse3)

Lcp = SBpS83 - 587C6,CO3 (1Mc)

The equations of motion and boundary conditions associated with the booms
2, 3, and 4 are obtained from Eqs. (109) and (110) by replacing a by
m-a, mta, and 2m-a, respectively, and, of course, changing the sub-
scripts of Vi, and W, accordingly.

Following the same procedure as that used to obtain Eqs. (109)

and (110), the equation of motion and boundary conditions for Vg are

o5 {(hys + xg) [-uy(upss + wgcB) + 30%4,7 (24288 + 243c8)]

2

+V)[w2+w +2§22
5/LW2 3

+ (h

2
5 - 307 (15 + 2,80+ (h,g + wg)lu) (ugss
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2

- wpCB) - 30 259 (2,358 - £55C8)] + (ugCB + wySB)Wg)

- "_ T PS5 [(hyg *+ xg)(wpcB - w3sg) - (h,g + wg ) (wpsB + wacB) + 95]

d 2 2

2 2 2
T N (2] + (208 = 2358)" + 2 - 3[e 7 + (2,58 - 25358)7]}
| 2 24, 1 4 5 y
{5‘ o [(hxs + 25) - (hX5 + X5) 1} Vs + > EIZS V5V52
32 El 1-24'2)7 + = 0 112
2[ 25 5('5"’5)] py5"'0 ’ <X5<2'5 ( a)
5
v5(0) =0 , vé(O) =0 (112b)
5 ' "2 __ 5 2 -
E'EIZS VsVs© + AXg [EIZS 5 (1 §' )] = 2% 0

(112¢)

ELe vi (1 - 2 vg2 =0

and those for we are
o5 {(hyg + x5) [(w3sB - wycB)(wysB + wycB) - 30° (2,358 - 259C8) (2,758

+ 253¢8)] - (hyg + vg)lwy(wpcs - wyse) - 302 247 (2g9C8 - 2,358)

2

+

2 2
(h,g + wg) <;] + (wpsB + w3cB)” + 20" - 30° [za$ + (2,088

-+

za3cs)2]:> - Vg (wpsB + w3cs)}

%t' g ["(hxs + Xs)u)-l + (hys + Vs)(w3CB + u)zSB)]

--< Q {z + (zczcs - £C3SB)2 + 2 - 3[25 + (zazcs - za3se)2]} x

2 l "
o5 [hgg + 15)7 - (hyg + x5)°1) wg + 3 ET g wu?
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a L ! -
2 LELgwy (1= 2 w9+ P52 0 0< x5 < 25 (113a)
5
w5(0) =0 , wé(O) =0 (113b)
2 Bl e wiwtl + =2 [EI_ Wy (1 2 wi2y] =0 )
7 Ty5 757 X y5"'5 2 5 Ulxg = 15
\ (113¢)
1] 5 l2 = 0
EL gwg (1 - 5 wg®) Xs = 15

The equations for boom 6 are obtained from Egs. (112) and (113) by an

appropriate change in subscript, and by replacing 8 by n+8.

b. Perturbation solution of the equilibrium problem.

The first problem in attempting a solution of the equations of
motion, Egs. (108), (109), (112), and (113), is to identify the equilibrium
configurations. To this end, we must let all the velocities and accelera-
tions equal to zero in these equations. This leaves us three transcendental
equations for the rotations.ej (i = 1,2,3) and twelve nonlinear differential
equations for the elastic displacements v,, w, (i =1,2,...,6).

We shall consider the solution of the nonlinear equilibrium problem

in the form
Vio(%4) = vipg(xi) * vio1(x;)s Wig(xi) = Wigg(Xi) * Wy (x5,
i21,2,0..,6 (114)

where the third subscripts on the right side of Eqs. (114) indicate the

solution of the linearized problem if the subscript is zero and relatively
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small perturbations if the subscript is one.
matrix of the deformed body can be written as

6
(07 = @7+ ploy -

1

It follows that the inertia

T ° T 115)
E—O [21-] [Ji]o[li] + 1'51 [21] [Ji]1[g‘i] (

where [J(O)]0 is the inertia matrix as if the body was entirely rigid, in

which
Jo110 = "o Joz20 = Bo* Y0330 = Co
Jo120 = Y0210 = Y0130 = Y0310 = Y0230 = 0320 T °
are the moments of inertia of the rigid hub, and
J = fzi (h2,+h% . Ydx, +m. (h2.+h2.)
110~ Jy Pit i zd /T My iz
H 2,,2 2 2
J1220 = fO Di[(hxi+xi) +hzi]dxi+mi[(hxi+£i) +hzi]
J - 1 [(h, o +x; )2+, Jdx,+ms [ (hy o +25)2+h2. ]
1330 7 | #illheytxi) ehygJoxgam [ihyg ey )4y,
i=1,2,...,6
2
Y5120 7 Yi210 _Jo o4 (hyj+x;)hysdx-m, (hy o+25)h
t
ki
N230 = diszo T 7| oiyihai 9 Myt

0

(116)

(117)

are the moments of inertia of the appendages when in undeformed state,

expressed in terms of local coordinates. Moreover, [J(O)]] is the change
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in the inertia matrix due to first order elastic displatements, which has

the elements

J .M (2h v, T +w2 )dx.
il 0 Pi 100 Vi00t<"zi%i00"%ig0:

2
(2hy1v100+v100+2hz1w100 100)‘)(1 =

2
. 2
i1 * fo pi(thiw100+w§00)dxi+mi(thiw100+w100)‘x1 -

]
=
-—de

o 2 2
sy = fo pi(ZhyiV100+Vi00)dxi+mi(ZhyiViOO+Vi00),Xi 'y

2-
Ji121 = dign © -jo 04 (hyi+x5 V5 godXs = Mi (hys+x; )V1oo'

n
bac)
-k

24
Ji131 = diany * -[o i (M4 Wy 0dx; - 1(hxi+xi)w100‘xi -

+h

2.
i231 = Yizz © -fo i(hy 3% 00*P25V4 00"V 00" 001 %4

(“y1‘”1oo*“zivioo“ioo"‘ioo)|x1 .

i=1,2,...,6 (118)

To linearize the algebraic equations for the angles 85 (j = 1,2,3)
we would have to assume that the angles are small. This, however, is not
always true for an arbitrary satellite, so that linearization cannot be

) justified. Fortunately, it is not difficult to solve the nonlinear
algebraic equations for the angles 05 (j = 1,2,3) by means of Newton-

Raphson method for the moments of inertia given. As a first iteration,
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we insert the moments of inertia of the satellite regarded as rigid into
the three transcendental equations for ej (j =1,2,3), and obtain some
preliminary values for these angles. Hence, letting all terms in Eas.

(108) involving time derivatives equal to zero, we obtain

* %* %* *
4J15,0C01587C8p + (Jppq - J330)587C04 (c291 - 352e2) + 80740587580

*
+ Jy3g(c®ey - s287)(3s%0, - c?ey) = 0 (119)
130 + 830 soq(c2 2 835, 52 8, - 8J3anco (c2
110582687 120591(c%82 - 5%8p) - 4J,,4578758pC8, - 8Jy34co7(c™8)
- 3262) + 8J§3Ose]ce1sezce2 - 4J;30c291592c92 =0 (11%)

‘J?20(5292 - 3C292) + 4(J;]0 - J;20)561562c62 + J?Zosze](czez - 35262)

1

+ 4J,,,C0,56,C0, - J;3ose1ce](c292 - 35292) =0 (119c)

*
230
where [J*]o = [e]g [J(O)]O [6]3 in which [6]3 is given by the first of
Eqs. (104). Regarding the angles 85 (j = 1,2,3) as known constants, we

.y W

can linearize Egs. (109), (110), (112), and (113) with respect to Vis Wy

and their derivatives, and solve for the perturbed elastic displacements.

Hence, inserting Eqs. (114) into (109), we obtain the equations for Y100

in the form
2
1 {(hx] + x]) [(w]OCa + mZOSa)(m]OSa - wZOCa) - 30 (Qa]OCa
+ 250058) (a7 ~%ag0ca)] * (hyy + vyg0) [(wygca + wpgsa)? + ufy

2
+ 292 - 392 <'(2a] pca + lazosa)z + £a30>] + (h21 + Wloo)[w3o(w105a
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- wZOCa) - 392 la3o(za105a - zaZOCQ)]} - V;OO 0] (hx]

2
+x) 22 {(zC]OSa - zczoca) + cho +2 - 3[(2a105a - ZaZOCa)

1 ? 2
+ 235010 + Vigo @ {Z o1 [lhyy +29)% = (hyy + x)°]

2
£ (hg * 27) L(2aqgse - 2epoCa)” * 2eso * 2 - 3[(241050

1

"n

) ’LaZOCO‘)2 + “ago]} - E1 Vyq9 (120a)

where V100 is subject to the boundary conditions
v100(0) =0 , ViOO(O) = 0 (120b)
2
m, {(hx] + 11) [(w]OCa + wZOSa)(w]OSa - wZOCa) -39 (Ra1OCa

2
+ ZaZOSa)(Ea]OSa - zaZOCa)] + (hy] + V100)[(w10Ca + wZOSa)

+

w%o + 292 - 392 <(Za]OC0 + laZOSu)Z + 2a30> ] + (hz]

+

2
Wio0) Luggluygse - wpgea) - 30° 2a30(24705e - 2a20ca)]

' - 2 2
Voo (hg *+ 21) { (erg5e = Regpca)? *+ 2c30 + 2 - 3L{zypgsa

2 2 " —
' (120c)

EI v, =0
100{y, = 1,

The quantities wjos %3j0 and 2¢40 (j = 1,2,3) appearing in Eqs. (120) are to
be calculated by using 8 (j = 1,2,3) as given by Eqs. (119). Note that
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now primes designate total derivatives with respect to x, because Vvipg

depends on x alone and not on t. Similarly, for Wigo e have

oy {(hyy + x)[-wgg(wygce + uggsa) + 3°2a30(2a1gce + 2a2050)]
+ (hyl + vi00) [w30(w]05a - wppCa) - 3922a30(£a105a - 2a20¢2)]
+ (hyy + wigg) [(uTg + ugg) + 202 - 32(2, 3 + 250) )

- 2
01 Wigo (hyq * X7) 9% {(1e1pse - 2eg0ce)? + 2c30 * 2 - 3[(%4108a

az0ce)? + 2301} + wigg 9 G o1 [lhyy + 41)% = (hyy + x)?]

+

2 2 wno
lazoca) + 23301} - EIy] W]OO =0 (]213)

where 100 is subject to the boundary conditions

wigp(0) = 0 , w100(0) =0 (121b)
m] {(hx] + l]) [-m3o(w]0Ca + wzosd) + 3Qzla3(2a]oca + QaZOSa)]
+ (hy] + V100) [w3g(wygSa - wpgca) - 3Q22a3(za]05a - 2320¢2)]

2

+(hyy + wyge) [ufg + uBg + 202 - 302 (1,85 + 2a30)]

: 2
- g @ (hey + 21) ((acrgsa - 2ez0ca)® + ae3g + 2 - 3 (24705

0

2 2 "
- 2a20Ca) + 2a30]> } + EI W]OO X] _ 21
(121c)

fl
o

ET Wioo | x

170
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The differential equations and boundary conditions for Vioo @4 Wigo

(i = 2,3,4) are obtained from Eqs. (120) and (121) by replacing the sub-

scripts of V100 and w by the appropriate ones and the angle a by n-a,

100
m+a, and 2m-a, respectively. On the other hand, the differential

equations and boundary conditions for V500 and w are obtained from

500
Egs. (112) and (113) in the form

2
pe {(Ryg + x5) [-wjglupgse + wggeB) + 30%0,5(2,0058 + 2,30¢8)]

2

2, 2 2,2 . 2
+ {hyg + vgp) [wgg *+ w3g + 207 - 307 (2529 *+ 2,30)]

-+

2
(hy + Wegg) Lwygluggss - wygC8) - 3072,70(253058 - zazoce)]}

: 2
vgoo 05 @ (hyg + x5) {250 + (2cg0c8 = 2c3058)

+

2 2 H 2]
2 - 302,70 *+ (23008 - 253058)°] + vggq © o5 [(hys

+

15)2 - (g + x5)°1) {2 cfg + (acpeee - 23g58)% + 2

2 2 _
302470 * (£520¢8 - 253058)°1} - El,g5 Vgop = O (122a)

where V500 satisfies the boundary conditions

VSOO(O) =0 , (0) =0 (122b)

V500

1
ELe Vi, ' =0 (122¢)

as well as
og {(hyg + xg) [{w3qs8 - wZOCB)(wZOSB *+ ug0CB) - 392(Qa3058
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" 2300%8) (822058 * %3080 - (hyo + v50) Tugguyges - wygse)

2 2 2
- 30 Q,a]o(lazocs - 233058) + (hZS + WSOO) {LU-'O + (wZOSB + w3OCB)

2 2 2 2 : 2
+207 - 30% Tagyg + (20098 + 2,53068)°]} - Wgqq 052° (hys

2 2 2
+ xs) {cho + (zczoce - 2C3ose) + 2 - 3[,0,61]O + (aazoce - za3ose) 1}

" 2 2 2
+ W500 QZ {;_ Py [(hxs + 9«5) - (hxs + Xs) ]} {ZC]O + (chocs

2 nn
- 23058)° + 2 - 3liafg * (Rap0ce - 2,3058)°1) - Elpg wggy = 0 (123)

(0) =0 (0) =0 (123b)

%500 » Y500

El P =0 , EI =0 (123c)

W W
y5 "s00(_ . y5 “500|,
Xs 2.5 Xs 9.5

The differential equations and boundary conditions for V600 and Wgoo are
obtained by replacing in Eqs. (122) and (123) V500 and Wgqq by vggq and
600 and 8 by m+B, respectively.
On the other hand, the boundary-value problem for the perturbation
V101 is defined by the differential equation
p]v]m {(w]OCa + wZOSa)Z + w3Q + 292 - 392 [(la]OCa + 9’a205°‘)2 + 23.?30]}
+ p]w]m [w30(w-|05a - wZOCa) - 3922.330(2.a]05a - zaZOCa)]

' 2 2
+ V~|0'| {'O-IQ (hx-l + X'I) <(2,c~|oSa - zczoca) + 9’C30 + 2
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2 2 "t "u

" 2 /1 2 2
MY ta <?_°1[(hx1 +07)" - (g +xq)°] + my (hyy

+

2 2
2]» < (QC]OSG - Zczoca) + 2C30 +2 - 3[(23105(1 - 9,a20C'1)

+

2 15
2a3o]> YR [ (v 100) + 10 vigovypol?

f1h} ) " fn 5 ) 2 -— 5_ 1 3
* Bl vigy (10 vigg¥igg) - By vigy [0 - 3 (vigg)T = -El3 [5(vy o)
+ 10 vioym 2 vifa (vq )2] (124a)
Y100¥100¥100 * 7 V100 (Voo
and the boundary conditions
V]O](O) =0 , Vi01(0) =0 (124b)

mvion Llunga + upgsa)? + oy + 26 - 38 ( (2500m + 2905012 + fa3g] *
mW101 [w30(w]05a - wZOCa) 302 2a30(£a105a - zaZOCa)]

*vigy a2 (hy + 21) {(eqgse - 2epqee) + 23 + 2

= 3Llagyg50 - tagee)? + 2,501} - 3 €Ly [2vigovig * (vigg)?]

- Elz1 ¥igr (5¥i0o¥foo)
215

ul ' ' 2 m )
*ELy vigy 1 - —("100) 7 Ly Tvige)® {0

2ViOO(VT00)2]
rat x; = b (124c¢)

- 5 ] 2 "

- ] n [] - 5 2 n
Mioovioo¥ior! = = 7 Elzy (vipg)Vigo
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and that for the perturbation %01 by

P1V101

+

™VYi01

2 2

2,,2 "
3M(a1050 - Zap0ce) * 2301)  + E1yy [10 wiowiog

2, 2
¥ [utg * upo *+ 28

[w30(w-|OSa - wZOCa) - 3922330(231050 - 2a20CG)]

2 - 302 (2,80 + 2,30)]

wigy {-019° (hgy + %) <(9‘c105°‘ - agpqca) + 250 + 2

5 wigo%igol} * wion {92@501 [(hyg + 29)% = (hyq + x7)?]
my (hyeq + 11)> <(2c105°‘ - 2cp8a) + 250 *+ 2 - 3L(agy8e
2 . 2 15 , . \2 -

El,pwior (10 wiggwigg)

5 . 24 _ 5 " 3 !
[1- 5 Wjgg)] = - Ey [3 (Wigg)” + 10 wiogWigg"ing

(125a)

w]o](O) =0 , wi01(0) =0 (125b)

[uggluggse - upgea) = 382550 (47050 = £4p0a)]

2

¢ (2370 * 2a30)]

- 392

2

] 2
Wop {me (hX] + z]) < (zC]OSQ - 2c20Ca) R 2 - 3[(2a105a

2 2 5 ' m " 2
ta20%e)’ * a30]) - 5 Elyy [2wiogwigo + (Wipg)*]
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- Elyy

EI,; wigr (5wigo¥ioo)

" 5 ' 27 . _§_ . 2 m 3
+ Elyy wgy [T - 5 (wigg)®] = 5 Elyy Llwigg)® g
+ ZW' (W" )2]
. \ (125¢)
[(1 - 3 (g)?] wigy
- 5w! ] = (wd )2 wh
100%100"101 El 1 (Wigo) Wioo X5 = is |

with companion equations for v;5y and W01 (i = 2,3,4). In a like manner

P5Y50]

+

2 2 ( 2 2 )]

- 397 (%590 * %a30

lugo + w0 * 20
osWs01 Lw10(w3088 = wp0e8) = 30%2,10(253088 - 2590¢8)]
Vinr {- nz(h + Xg) 9.2+(z CB - 2 sa)2+2
801 {-p58° (hys + X5) { 2.50 + (%20 c30
2 2 " Ry
3[2a70 *+ (252008 - 233058)°1 ) * Elz5 [10 vgoovsng *+ 5 VEgovi0od?

) 2
Vgo-l {92 <% P5 L(hxs + 25)2 - (hxs + Xs) ]> < lc$0 + (R’CZOCS
2 )2

2 15 o
2c3058)" + 2 = 3[e,d0 + (242008 - £230%8) ]:> * Els [77 (v5go

10 v5aovggel} * El,g Vg (10 veog¥so0)

i 5 ! 2 - 5 " 3
ELg vsoy [1 - 5 (vggp)7] = - Elg [5 (v5qp)

”l 5 || 11 t 2 \
10 V500V500¥500 * 7 V500 (V500)°] (126a)

v501(0) =0 , véo1ﬂ0) =0 (126b)
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+

_5

2

and

°5V507

+

5 1 " "n 2 1) [] n ]
5 [2 vggvspo * (VB0o)“ V501 = 5 V500¥500Y501

5 ! "
[] - E-(VSOO)Z] VSO]}

' 2 1 ' 1
L5 [(vdge)? V800 * 2 Vo (vE00)*] ?
5 2 |
(o - 5 (VéOO) 1 veg Ir at xg = &g (126¢)
- 5 vl V” vl } - - 5 EI (V' )2 vn
5005007501 2 725 500 500

[ing(upncs = w3ps8) = 3% 210( %2008 = a3058)]
2
oswsg) {wig + (upgss * wgees)? + 207 - 302 (1,50 + (220058
243068)21) + wdgy (- o5 (g5 + X5) <2c%0 + (2008
2 2 2
2c3058)¢ + 2 - 3[2a70 * (La20¢8 - £a30%8)°]
El5 (10 wgogwsng + 5 W500%500]}

n 2
501 {92<;—°5 [(hys + 25)? = (hyg + X5)2]> <2c1o + (2cp0C8

.. " 2
"c3058)2 +2 - 3[250 + (23008 - za3oss)z]> + EIy5 [l% (wsoo)
10 wgooWenolt + Elys wigy (10 wgggWsao)
nn - 5 1 2 - _ _5_ " 3
El g wgoq [1 - 5 (Wgpq)°] = - Elyg [5 (wgqp)
10 WenrWenaWenn + LR (W, )2] (127a)
500%500"500 © 7 500 ‘"500 a
w1 (0) = 0, wggy(0) =0 (127b)
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"y

5 ' ' 2 ' - ' " '
Elyg - 5 [2 wsgMs00 * (W500)°] 5oy = 5 Weoo¥500M501
+ 11 - 3 (wgoe)®D Wiy
5 (M500)" 1 W50

- 5 ' 2 " ' " 2
= 5 Elys [lwggo)® Wapg *+ 2 wgpg (wgp)“]

- Bl ([(7 - g-(wéoo)zl WEQT r at x; = ig (127¢)

_ ' " ' =_5 ' 2 "
5 W500¥500"501} = = 5 Elys (s00)° %800 |

It should be pointed out that this particular perturbation scheme
enables us to solve first Eqs. (119) for the first approximation rotations
83500 (j = 1,2,3) independently of the elastic displacements. The rotations
are then introduced into Egs. (120) - (123), yielding the first approxi-
mation for the elastic displacements Vigp and wigg (i = 1,2,...,6)
independently of one another. Inserting the first approximation vioo
and w;gg into Eqs. (124) - (127), we can obtain the corrections Vig and
Wig1 to the elastic displacements. The sums of these solutions yield v;q
and w;q (i = 1,2,...,6) according to Egs. (114). Then, inserting viq and
wig (i =1,2,...,6) back into Eqs. (119), we obtain the angles 830
(j = 1,2,3). In the vast majority of cases, this approximation is suf-
ficient. If not, having the new angles, we can iterate once more to

improve the elastic displacements Vio and wjg, as well as the angles 6jg.

c. Liapunov stability analysis and the eigenvalue problem.

The values ejo, Vio» and w0 obtained above, together with sets
of admissible functions ¢j(xi) and Wj(xi)’ are subsequently introduced

into Egs. (49), (51), and (53), to obtain the coefficients Mk fiks and
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kjk' The coefficients L and kjk yield the symmetric matrices [m] and
[k], whereas using Eq. (57) the coefficients fjk yield the skew symmetric
matrix [g].

From Sec. 6, if [k] represents a positive definite matrix, then
the nontrivial equilibrium is asympototically stable. On the other hand,
to obtain the natural frequencies, we must solve the eigenvalue problem
in the form (66). However, before the nontrivial equilibrium can be
determined, the system stability tested, and the natural frequencies cal-
culated, it is desirable to use specific values for the system parameters.

This is done in the next section.

d. The shortening of the projections effect

As indicated in Sec. 2, the booms are assumed to be inextensional,
so that there is no Tongitudinal vibration. However, because of the
transverse displacements, there is a shortening of the projection on the
nominal axis of any element of length of the boom. In fact, from
Eq. (14), the change in length of projection of any element of length dxi

is

_ 1 8v.i 2 3w1- 2 ]
du'i S - é_ —a—x_-._. + a—x—.— dX_i 9 1 - ],2,.-0,6 (]28)

We shall treat this shortening as a perturbation of the spétia1

coordinate X5 SO that we can write

N

X; = Xsg t Xy . O SXip 2%, F=1,2,, (129)

where Xjq are the original spatial coordinates and X are the
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perturbations. From Egs. (128), however, we conclude that the shortening
is a second-order effect. Hence, it will not affect Eqs. (120) - (123)

except that x;

; are to be regarded in these equations as Xi0 (i =1,2,...,6).

This enables us to solve for Vioo and Ws00 and write the shortening of,

the projections in the form

i=1,2,...,6 (130)

where £; is a dummy variable. On the other hand, the perturbation equa-
tions, Eqs. (124) - (127), must be modified to account for the shortening

effect. For example, the boundary-value problem for Viol becomes

2

2 2 2

+

P1%101 [w30(w]05a - wpgCa) - 3922a30 (la]OSa - zaZOCa)]

* vigy - 0192 (hy1 + X99) <ﬁ2¢105a - 2.0pCa) + zC§0 +2

- 3[(2a]05a - Jzazoc'oz)2 + 2a§0>+ EL, (10 vfl'oov'fbo +5 vigoVioo)?
* oy @ (G ey [l + 10) = (hy + x)20 + my(hyy

* j110)> <(“c105°‘ - "czoc"‘)2+ rcfo + 2 - 3L(2a1050 - 24p0ca)? + 1a30a>
]5 m 1 1 1"

* Bl [ (vjg)® + 10 Vigg¥ingdd * Elpy (¥igy (10 Vigovio)

"wn - 5 " 2 ) ) m

Vigy T1 - 2 (V)21 = -EL,y (3 (vige)® * 10 vigg¥ioovito

5 |||| 1 2
* 3 Vigo (Vigo)“] * % o1 [luggea + upgsa) (wgsa - wpgca)
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2
X rav ]
- % (470 * 2a205%) (37052 - 2420C) f 10 ;ﬁ——lgg

3”100721

0

5T dey 5 0 < X309 < &g (131)
subject to boundary conditions (125b) and (125c), where in the latter

21 must be replaced by the shortened length 210+

12. The RAE/B Satellite. Numerical Results.

The general formulation of Sec. 11 has been used to obtain the
nontrivial equilibrium configuration of the RAE/B satellite, to test the
stability of equilibrium, and to calculate the natural frequencies of
oscillation about the nontrivial equilibrium. The system parameters are

as follows:

2

87.74 slug ft°, By = 83.74 slug tZ, Cy = 18 slug ft?

Ag

o1 = 0p = p3 = pg = 4.388 x 1074 slug ft1 o5 = o¢ = 4.596
x 1074 stug ft-!

m =m, =m3=m = 2.40 % 1073 slug, mg = me = 0

L1 = 2 = 23 = 24 = 600 ft, 25 = 2g = 315 ft

Ely = El,y = Elyp = ... = El,y = 15.278 Tb t2, o = 30°

Ely5 = El5 = Elyg = El,g = 13.889 1b ft?, & = 25°

hyl = hyg = 0.973 ft, hyp = hyq = 0.878 ft, hyg = hyg = 0

hy = -hyg = 0.705 &, hyp = -h 3 = -0.760 ft, hs = hyg = -1.800 ft

hyy = hgp = hy3 = h,g = hyg = hyg = 0

21
Q= 4.653 x 10~4 rad sec'7

We shall present the results of the analyses in the order listed above.
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a. Nontrivial equilibrium

Inserting the above data into Egqs. (116) and (117), as indicated

in Eq. (115), and solving Eqs. (119), we obtain

8100 ° 0.13537 rad = 7.756 degq.
8200 = -5-63789 x 1078 rad = -3.2302 x 1076 deg.
€300 = 1.37374 x 1076 rad = 7.87096 x 1075 deg.

We note that 8100 is caused largely by the damper booms. The fact that
the rods are not attached at the satellite mass center turns out to have
an insignificant effect on 6500 (J = 1,2,3).
To evaluate the elastic displacements v;gq(x;) and wioo(xi)
(i =1,2,...,6). We assume the solution of Eqs. (120) - (123) in the form
p
Vigo4) = I aigln(x)
r=
i = 1,2,0..,6 (132)
p
“ioo(Xi) = I Briger(xi)

where

op(x3) = A L(cos B2y + cosh Bpei)(sin Bpxj - sinh Byx;)
- (sin B2y + sinh Bne4)(cos Bpxj - cosh BpXi)] (133)

are eigenfunctions corresponding to a bar in bending with the end x; = 0
fixed and having a mass m; attached at the end x; = 2;. The eigenvalues

Bpty are solutions of the characteristic equation
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M
P324

(1 + cos BpL; Cosh B.23) = B84 (sin Byk; COSh Bp2j
- cos B.L; sinh B.24) (134)

Moreover, the amplitudes A, are such that the eigenfunctions ¢r(X1) are
orthonormal, i.e., they satisfy the relation

2,
foI pi0p(X3)95(x;)dx; + myep(24)05(25) = g (135)

where & .. is the Kronecker delta. Limiting the series in (132) to two
terms, p = 2, the first two roots of Eq. (134) and the amplitudes A,

corresponding to i = 1,2,3,4 are

82, = 1.85813 Ay = 0.47696 slug™'/? %)
136
8,0, = 4.65310 A, = 0.03789  slug /2
In addition, the coefficients CHIp briO (i =1,2,3,4) are
Table I.

i 3150 3240 b1io baio
] -0.13656 x 102 -0.98055 x 10~ 0.55184 0.46385 x 1072
2 0.13652 x 102 0.97981 x 107" 0.55188 0.46385 x 1072
3 -0.13652 x 102 -0.97980 x 107" -0.55187  -0.46384 x 1072
4 0.13656 x 102 0.98054 x 10°'  -0.55184  -0.46385 x 1072

The first two roots of Eq. (134) with m; = 0, and the amplitudes Ay and

P, corresponding to i = 5,6 are
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812; = 1.87511 Ay = 0.63510  slug™'/2
(137)

822 = 4.69414 A, = 0.04899  slug /2

whereas the coefficients ariO and briO are
Table II

i 3740 3240 byio bsio
5 -0.93855 x 10°2  -0.12900 x 10”3 0.17756 0.70688 x 1073
6 ~0.93840 x 1072 -0.12900 x 10°3 0.17756 0.70688 x 103

It will prove of interest to list the elastic displacements of the end
points, as calculated by means of the iinearized equations. These dis-

placements are

Vipo(21) = -52.205 ft, Wigo(#1) = 2.1071 ft,
Vooo(tp) = 52.192 ft, Wogo(22) = 2.1072 ft,
Vaop(t3) = -52.191 ft, Wagp(23) = -2.1072 ft,
Vago(2g) = 52.204 ft, Wago(ta) = -2.1071 ft,
Veoo(ts) = - 4.8655 x 1072 ft,  wgpo(25) = 0.92961 ft,
Veoo(t) = -4.8648 x 1072 ft,  wgo(2g) = 0.92960 ft

) (o= ) le
The above values of Vi00<xi) and WiOO(X1) (i =1,2,...,6) enable
us to solve Egs. (119) for the angles 850 (j = 1,2,3) and Eq. (131) and
the companion ones for the perturbations V101(xf)’ Wi01(xi) (i =1,2,....6).

The resulting angles are
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810 = 0.19695 rad = 11.2846 deq.
-6.54250 x 1078 rad = -3.74858 x 107° deq.

1.37608 x 107% rad = 7.88438 x 1072 deq.

Instead of listing the perturbations Vigl and wigy, we shall list the

complete solutions v;q and Wi in the form of the series

i=1,2,...,6 (138)

where ¢ri(xi) are still given by Egs. (133), in which the eigenvalues
Bpti and amplitudes A. (r = 1,2) are given by (136) and (137). The final

results are tabulated as follows

Table III
i Ni %2 by b2
1 -0.13803 x 102 -0.86379 x 107! 0.54865 0.46378 x 1072
0.13800 x 10° 0.86313 x 10" 0.54869  0.46378 x 102
-0.13800 x 102 -0.86313 x 107" -0.54869  -0.46378 x 1072
0.13803 x 102 0.86379 x 107! -0.54865  -0.46378 x 10~2

~0.93855 x 1072 -0.12900 x 1073 0.17756 0.70670 x 1073

B s, W N

-0.93840 x 1072 -0.12900 x 1073 0.17756 0.70670 x 1073
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Moreover, the final end displacements are \

V1O(¢1) = -52.816 ft, w]0(21) = 2.0948 ft,

Voqlip) = 52.803 ft, vpglip) = 2.0950 ft, |
v30(£3) = -52.803 ft, w30(23) = -2.0950 ft,

V40(£4> = 52-816 ft, W4O(94) = -2.0948 ft,

- - -2 n —

v50(£5) = - 4.8655 x 10°“ ft, wso(hs) = 0.92962 ft,

Veo(te) = - 4.8648 x 1072 ft wen(2:) = 0.92962 ft

60\ *6 ’ ’ 6076 ) ’

and we note that the nonlinear effect is virtually zero for booms 5 and 6.

The nontrivial equilibrium is depicted in Fig. 7, where only the radial
|
\
booms are shown because the displacements of the damper booms are in-
\

significant.

b. Liapunov stability analysis

A stability analysis using x, as given by Eq. (60), as a testing
function has been carried out. Essentially, the analysis reduced to
testing the matrix [k] For positive definiteness, where the elements of
[k] are given by Egs. (53). The numerical values of the elements for
the particular configuration at hand are listed in the next subsection.

The matrix was found to be positive definite, so that the equilibrium is

asymptotically stable.

c. Eigenvalue problem

Using Eqs. (49), (51), (53), and (57), in conjunction with the

above data, we obtain the elements
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Note that the elastic displacements were represented by one mode each.

Using the formulation of Section 7, we obtain.the following natural

frequencies
Table VII
+1.514583 x 1072 +1.955743 x 1073
+ 9.550415 x 1073 +1.871461 x 1073
+9.900792 x 1073 +1.856504 x 107
, + 6.143208 x 107 +1.856504 x 107>
w; = rad sec -3 -4
+ 4.319115 x 10 +8.708815 x 10
+2.020401 x 107 +6.155318 x 1074
4

3

+ 2.020401 x 10 + 3.439481 x 10

+1.975175 x 1073

The natural modes have also been obtained and will be discussed in a

future paper.

d. Parametric study

The stability analysis was carried one step farther by varying the
angle a. It was found that the system was asymptotically stable for
a = 50°, but became unstable for a = 51°. The results can be easily
explained by the fact that in the absence of damper booms anc for com-
pletely rigid radial booms the system becomes unstable around a = 45°.
The gravitational and centrifugal effects tend to deform the flexibie

booms in a manner that the moments of inertia about the local vertical and
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about an axis tangent to the orbit are the same for an angle a such that
50° < o < 51°. It should be mentioned that instability in both cases can
be traced to angle 63, which tends to become large when the moment of
inertia about the local vertical becomes larger than that about the axis
tangent to the orbit, as at this point the "least moment of inertia"
criterion is violated.

The same parametric study was undertaken with respect to the
natural frequencies. In terms of natural frequencies, instability occurs
when at least one natural frequency (we recall that in our case the natural
frequencies occur in pairs) reduces to zero. Here again the system be-
comes unstable for 50° < o < 51°, thus corroborating the results obtained

by the Liapunov stability analysis.

13. Summary and Conclusions

Two new theories for studying the motion characteristics of a
rotating system with flexible parts about undeformed equilibrium have been
developed. The first is qualitative and the second quantitative.
Specifically, the first represents a stability theory and the second a
method for obtaining the system natural frequencies.

The stability theory is based on the Liapunov direct method and
makes use of modal analysis to represent elastic displacements. The
novelty of the formulation lies in the fact that for the first time a
nontrivial equilibrium is considered in conjunction with the Liapunov
direct method for a stability analysis of spinning flexible bodies capable
of large deformations.

The stability analysis can be divided into two major parts: the

evaluation of the nontrivial equilibrium and the stability analysis itself.
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When the body is capable of large deformations, nonlinear algebraic

and differential equations must be solved for the rotational and elastic
displacements, respectively, where these displacements define the
equilibrium configurations of the system, Because the problem is one of
stability about nontrivial equilibrium, it is necessary to expand the
Liapunov function about that equilibrium, Assuming small displacements
from equilibrium, the problem reduces to the evaluation of a Hessian
matrix at the nontrivial equilibrium and testing the matrix for sign
definiteness by means of Sylvester's criterion. It should be pointed out
that the size of the Hessian matrix depends on the number of eigenfunctions
used to represent the elastic displacements.

The method for obtaining the natural frequencies of the system
makes use of the variational equations about the nontrivial equilibrium.
Then the set of second-order differential equations is converted into a
set of twice the number of first-order differential equations. The
associated eigenvalue problem yields the system natural frequencies.

The two methods are quite general in scope, and can be used for
testing stability and calculating the natural frequencies of a large
variety of hybrid systems. As an application, the theory has been used to
test the stability of the RAE/B satellite. First, the nonlinear equations
have been solved for the nontrivial equilibrium configuration, and then
this configuration has been used to evaluate the associated Hessian
matrix. The satellite was found to be stable. Then one of the systems
parameters has been varied to predict at which point the equilibrium be-
comes unstable. The results are in line with the expectations. 1In

addition, the system natural frequencies for oscillation about the
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deformed equilibrium were calculated. The parametric study used in con-
junction with the Liapunov stability analysis was used to examine how the
frequencies are affected. The study resulted in the same instability

statement.

90




14,

10.

11.

12.

References

Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hi1l Book
Co., N.Y., 1970.

Thomson, W. T. and Reiter, G. S., "Attitude Drift of Space Vehicles,"
The Journal of the Astronautical Sciences, Vol. 7, No. 2, 1960,
pp. 29-34.

Meirovitch, L., "Attitude Stability of an Elastic Body of
Revolution in Space," The Journal of the Astronautical Sciences,
Vol. 8, No. 4, 1961, pp. 110-113.

Hooker, W. W. and Margulies, G., "The Dynamical Attitude Equations
for an n-Body Satellite," The Journal of the Astronautical Sciences,
Vol. 12, No. 4, 1965, pp. 123-128.

Meirovitch, L. and Nelson, H. D., "On the High-Spin Motion of a
Satellite Containing Elastic Parts," Journal of Spacecraft and
Rockets, Vol. 3, No. 11, 1966, pp. 1597-1602.

Nelson, H. D. and Meirovitch, L., "Stability of a Nonsymmetrical
Satellite with Elastically Connected Moving Parts," The Journal of
the Astronautical Sciences, Vol. 13, No. 6, 1966, pp. 226-234.

Robe, T. R. and Kane, T. R., "Dynamics of an Elastic Satellite,"
International Journal of Solids and Structures, Vol. 3, 1967,
pp. 333-352, 691-703, 1031-1051.

Likins, P. W., "Modal Method for Analysis of Free Rotations of
Spacecraft," AIAA Journal, Vol. 5, No. 7, 1967, pp. 1304-1308.

Etkin, B. and Hughes, P. C., "Explanation of the Anomalous Spin
Behavior of Satellites with Long, Flexible Antennae," Journal of
Spacecraft and Rockets, Vol. 4, No. 9, 1967, pp. 1139-1145,

Modi, V. J. and Berenton, R. C., "Planar Librational Stability of a
Flexible Gravity-Gradient Satellite," AIAA Journal, Vol. 6, No. 3,
1968, pp. 511-517.

Newton, J. K. and Farrell, J. L., "Natural Frequencies of a Flexible
Gravity-Gradient Satellite," Journal of Spacecraft and Rockets,
Vol. 5, No. 5, 1968, pp. 560-569.

Likins, P. W. and Wirsching, P. A,, "Use of Synthetic Modes in
Hybrid Coordinate Dynamic Analysis," AIAA Jourral, Vol. 6, No. 10,
1968, pp. 1867-1872.

N



13.

14.

15.

16.

17.

18.

19.

20.

21.

Meirovitch, L., "Stability of a Spinning Body Containing Elastic
Parts via Liapunov's Direct Method," AIAA Journal, Vol. 8, No. 7,
1970, pp. 1193-1200.

Meirovitch, L., "A Method for the Liapunov Stability Analysis of
Force-Free Hybrid Dynamical Systems," AIAA Journal, Vol. 9, No. 9,
1971, pp. 1695-1701.

Meirovitch, L., "Liapunov Stability Analysis of Hybrid Dynamical
Systems with Multi-Elastic Domains," International Journal of Non-
Linear Mechanics, Vol. 7, 1972, pp. 425-443.

Meirovitch, L. and Calico, R. A., "Stability of Motion of Force-Free
Spinning Satellites with Flexible Appendages," Journal of Space-
craft and Rockets, Vol. 9, No. 4, 1972, pp. 237-245.

Meirovitch, L. and Calico, R. A., "A Comparative Study of Stability
Methods for Flexible Satellites," AIAA Journal, Vol. 11, No. 1,
1973, pp. 91-98.

Flatley, T. W., "Equilibrium Shapes of an Array of Long Elastic
Structural Members in Circular Orbit," NASA TN D-3173, March 1966.

Meirovitch, L., "Liapunov Stability Analysis of Hybrid Dynamical
Systems in the Neighborhood of Nontrivial Equilibrium."

Presented at the AAS/AIAA Astrodynamics Conference, Vail, Colorado,
July 16-18, 1973. To appear in the AIAA Journal.

Meirovitch, L., "A New Method of Solution of the Eigenvalue Problem
for Gyroscopic Systems." To appear in the AIAA Journal.

Meirovitch, L., Analytical Methods in Vibrations, The Macmillan Co.,
N.Y., 1967.

92




FIGURE | - GENERAL MATHEMATICAL MODEL
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FIGURE 2 - ELASTIC DISPLACEMENTS

FIGURE 3- ORBITAL AXES AND BODY AXES
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FIGURE 4 - FORCES ON ELASTIC BOOM

FIGURE 5 - DEFORMATION OF ELASTIC BOOM
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FIGURE 6-RADIO ASTRONOMY EXPLORER - LUNAR (RAE/8) SATELLITE
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FIGURE 7. NONTRIVIAL EQUILIBRIUM CONFIGURATION
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